【題目】已知定義域?yàn)?/span>的函數(shù)(,)
(1)設(shè),求的單調(diào)區(qū)間;
(2)設(shè)為導(dǎo)數(shù),
(i)證明:當(dāng),時,;
(ii)設(shè)關(guān)于的方程的根為,求證:
【答案】(1)當(dāng)為奇數(shù)時的增區(qū)間為,減區(qū)間為;當(dāng)為偶數(shù)時的增區(qū)間為及,減區(qū)間為。
(2)(i)證明見解析,(ii)證明見解析。
【解析】
(1)對,求導(dǎo)可得,分當(dāng)為大于1的奇數(shù),和為偶數(shù)時兩種情況討論可得的單調(diào)區(qū)間;
(2)(i)設(shè),,求導(dǎo)得,根據(jù)研究即可得到所證結(jié)論;
(ii),原方程化為解得,因?yàn)?/span>,所以;作差得,,由(i)知,可得,所以,即可得證.
(1),
當(dāng),時
即
(a)當(dāng)為大于1的奇數(shù)時,是偶數(shù),,,
當(dāng)時,,當(dāng)時
故的增區(qū)間為,減區(qū)間為
當(dāng)為偶數(shù)時,是奇數(shù),由于,所以
當(dāng)或時,,當(dāng)時
故的增區(qū)間為及,減區(qū)間為
綜上,當(dāng)為奇數(shù)時的增區(qū)間為,減區(qū)間為,
當(dāng)為偶數(shù)時的增區(qū)間為及,減區(qū)間為,
(2)(i)證明:設(shè),,則,
因?yàn)?/span>,,故在是增函數(shù),
從而,由于,
所以,
所以在是增函數(shù),,即
(ii),原方程化為
解得,因?yàn)?/span>,所以;
作差得,,
由(i)知,當(dāng),時,,
令,,故有,所以,,
綜上,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),圖象上兩相鄰對稱軸之間的距離為;_______________;
(Ⅰ)在①的一條對稱軸;②的一個對稱中心;③的圖象經(jīng)過點(diǎn)這三個條件中任選一個補(bǔ)充在上面空白橫線中,然后確定函數(shù)的解析式;
(Ⅱ)若動直線與和的圖象分別交于、兩點(diǎn),求線段長度的最大值及此時的值.
注:如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某大河的一段支流,岸線近似滿足∥寬度為7圓為河中的一個半徑為2的小島,小鎮(zhèn)位于岸線上,且滿足岸線現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計成與圓相切,設(shè)
(1)試將通道的長表示成的函數(shù),并指出其定義域.
(2)求通道的最短長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱錐的底面正方形邊長是3,是在底面上的射影,,是上的一點(diǎn),過且與、都平行的截面為五邊形.
(1)在圖中作出截面,并寫出作圖過程;
(2)求該截面面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球個.若從袋子中隨機(jī)抽取1個小球,取到標(biāo)號為2的小球的概率是.
(1)求的值;
(2)從袋子中不放回地隨機(jī)抽取2個小球,記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為.
①記“”為事件,求事件的概率;
②在區(qū)間內(nèi)任取2個實(shí)數(shù),,求事件“恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)若,極大值;
(2)若無零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若有兩個相異零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2cos(2x+)的圖象向左平移個單位長度,得到函數(shù)y=f(x)的圖象.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在[0,]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年春節(jié),各地的餐館都出現(xiàn)了用餐需預(yù)定的現(xiàn)象,致使一些人在沒有預(yù)定的情況下難以找到用餐的餐館,針對這種現(xiàn)象,專家對人們的用餐地點(diǎn)及性別作出調(diào)查,得到的情況如下表所示:
在家用餐 | 在餐館用餐 | 總計 | |
男性 | 30 | ||
女性 | 40 | ||
總計 | 50 | 100 |
(1)完成上述列聯(lián)表;
(2)根據(jù)表中的數(shù)據(jù),試通過計算判斷是否有的把握說明用餐地點(diǎn)與性別有關(guān)?
參考公式及數(shù)據(jù):,其中.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了改善市民的生活環(huán)境,長沙某大型工業(yè)城市決定對長沙市的1萬家中小型化工企業(yè)進(jìn)行污染情況摸排,并出臺相應(yīng)的整治措施.通過對這些企業(yè)的排污口水質(zhì),周邊空氣質(zhì)量等的檢驗(yàn),把污染情況綜合折算成標(biāo)準(zhǔn)分100分,發(fā)現(xiàn)長沙市的這些化工企業(yè)污染情況標(biāo)準(zhǔn)分基本服從正態(tài)分布N(50,162),分值越低,說明污染越嚴(yán)重;如果分值在[50,60]內(nèi),可以認(rèn)為該企業(yè)治污水平基本達(dá)標(biāo).
(Ⅰ)如圖為長沙市的某工業(yè)區(qū)所有被調(diào)査的化工企業(yè)的污染情況標(biāo)準(zhǔn)分的頻率分布直方圖,請計算這個工業(yè)區(qū)被調(diào)査的化工企業(yè)的污染情況標(biāo)準(zhǔn)分的平均值,并判斷該工業(yè)區(qū)的化工企業(yè)的治污平均值水平是否基本達(dá)標(biāo);
(Ⅱ)大量調(diào)査表明,如果污染企業(yè)繼續(xù)生產(chǎn),那么標(biāo)準(zhǔn)分低于18分的化工企業(yè)每月對周邊造成的直接損失約為10萬元,標(biāo)準(zhǔn)分在[18,34)內(nèi)的化工企業(yè)每月對周邊造成的直接損失約為4萬元.長沙市決定關(guān)停80%的標(biāo)準(zhǔn)分低于18分的化工企業(yè)和60%的標(biāo)準(zhǔn)分在[18,34)內(nèi)的化工企業(yè),每月可減少的直接損失約有多少?
(附:若隨機(jī)變量,則, ,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com