【題目】設(shè),函數(shù).

(1)若,極大值;

(2)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)若有兩個(gè)相異零點(diǎn),,求證:.

【答案】(1);(2);(3)證明見(jiàn)解析.

【解析】分析:(1),根據(jù)導(dǎo)數(shù)的符號(hào)可知的極大值為

(2) ,就分類討論即可;

(3)根據(jù)可以得到,因此原不等式的證明可化為,可用導(dǎo)數(shù)證明該不等式.

詳解:(1)當(dāng)時(shí),,

當(dāng)時(shí),,當(dāng)時(shí),,

的極大值為.

(2),

①若時(shí),則,是區(qū)間上的增函數(shù),

,

,函數(shù)在區(qū)間有唯一零點(diǎn);

②若有唯一零點(diǎn);

③若,令,得,

在區(qū)間上,,函數(shù)是增函數(shù);

在區(qū)間上,,函數(shù)是減函數(shù);

故在區(qū)間上,的極大值為,

由于無(wú)零點(diǎn),須使,解得,

故所求實(shí)數(shù)的取值范圍是

(3)由已知得,

所以,

等價(jià)于

不妨設(shè),令,,

,上為單調(diào)增函數(shù),

所以,也就是,故原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列三角形數(shù)表:
假設(shè)第n行的第二個(gè)數(shù)為
(1)歸納出an+1與an的關(guān)系式,并求出an的通項(xiàng)公式;
(2)設(shè)anbn=1(n≥2),求證:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了對(duì)2016年某校中考成績(jī)進(jìn)行分析,在60分以上的全體同學(xué)中隨機(jī)抽出8位,他們的數(shù)學(xué)分?jǐn)?shù)(已折算為百分制)從小到大排是60、65、70、75、80、85、90、95,物理分?jǐn)?shù)從小到大排是72、77、80、84、88、90、93、95. 參考公式:相關(guān)系數(shù)
回歸直線方程是: ,其中
參考數(shù)據(jù): , ,
(1)若規(guī)定85分以上為優(yōu)秀,求這8位同學(xué)中恰有3位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;
(2)若這8位同學(xué)的數(shù)學(xué)、物理、化學(xué)分?jǐn)?shù)事實(shí)上對(duì)應(yīng)如下表:

學(xué)生編號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)分?jǐn)?shù)x

60

65

70

75

80

85

90

95

物理分?jǐn)?shù)y

72

77

80

84

88

90

93

95

化學(xué)分?jǐn)?shù)z

67

72

76

80

84

87

90

92

①用變量y與x、z與x的相關(guān)系數(shù)說(shuō)明物理與數(shù)學(xué)、化學(xué)與數(shù)學(xué)的相關(guān)程度;
②求y與x、z與x的線性回歸方程(系數(shù)精確到0.01),當(dāng)某同學(xué)的數(shù)學(xué)成績(jī)?yōu)?0分時(shí),估計(jì)其物理、化學(xué)兩科的得分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí), .現(xiàn)已畫(huà)出函數(shù)軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:

(1)直接寫(xiě)出函數(shù) 的增區(qū)間;

(2)寫(xiě)出函數(shù), 的解析式;

(3)若函數(shù), ,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的有________(只填序號(hào))

①若直線與平面有無(wú)數(shù)個(gè)公共點(diǎn),則直線在平面內(nèi);

②若直線l上有無(wú)數(shù)個(gè)點(diǎn)不在平面α內(nèi),lα;

③若兩條異面直線中的一條與一個(gè)平面平行,則另一條直線一定與該平面相交;

④若直線l與平面α平行,l與平面α內(nèi)的直線平行或異面;

⑤若平面α∥平面β,直線aα,直線bβ,則直線ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若D′是平面α外一點(diǎn),則下列命題正確的是(
A.過(guò)D′只能作一條直線與平面α相交
B.過(guò)D′可作無(wú)數(shù)條直線與平面α垂直
C.過(guò)D′只能作一條直線與平面α平行
D.過(guò)D′可作無(wú)數(shù)條直線與平面α平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷售量(單位:噸)和年利潤(rùn)(單位:萬(wàn)元)的影響。對(duì)近六年的年宣傳費(fèi)和年銷售量的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

2013

2014

2015

2016

2017

2018

年宣傳費(fèi)(萬(wàn)元)

38

48

58

68

78

88

年銷售量(噸)

16.8

18.8

20.7

22.4

24.0

25.5

經(jīng)電腦擬,發(fā)現(xiàn)年宣傳費(fèi)(萬(wàn)元)與年銷售量(噸)之間近似滿足關(guān)系式。對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:

75.3

24.6

18.3

101.4

(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(fèi)(萬(wàn)元)的比值在區(qū)間內(nèi)時(shí)認(rèn)為該年效益良好,F(xiàn)從這6年中任選2年,記其中選到效益良好年的數(shù)量為,試求隨機(jī)變量的分布列和期望。(其中為自然對(duì)數(shù)的底數(shù),

附:對(duì)于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各項(xiàng)均為正數(shù)的數(shù)列{bn}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有2Sn=bn(bn+1).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)如果等比數(shù)列{an}共有2015項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列{an}的每相鄰兩項(xiàng)ak與ak+1之間插入k個(gè)(﹣1)kbk(k∈N*)后,得到一個(gè)新的數(shù)列{cn}.求數(shù)列{cn}中所有項(xiàng)的和;
(3)如果存在n∈N* , 使不等式 成立,求實(shí)數(shù)λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)C為圓(x+1)2+y2=8的圓心,P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP上,且有點(diǎn)A(1,0)和AP上的點(diǎn)M,滿足 =0, =2
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(2)若斜率為k的直線 l與圓x2+y2=1相切,直線 l與(1)中所求點(diǎn)Q的軌跡交于不同的兩點(diǎn)F,H,O是坐標(biāo)原點(diǎn),且 時(shí),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案