【題目】觀察下列三角形數(shù)表:
假設第n行的第二個數(shù)為
(1)歸納出an+1與an的關(guān)系式,并求出an的通項公式;
(2)設anbn=1(n≥2),求證:b2+b3+…+bn<2.

【答案】
(1)解:依題意an+1=an+n(n≥2),a2=2,

,

所以


(2)解:因為anbn=1,所以 ,
【解析】(1)利用數(shù)列的關(guān)系歸納出an+1與an的關(guān)系式,利用累加法求解即可.(2)利用放縮法化簡通項公式,通過裂項消項法求解即可.
【考點精析】利用數(shù)列的前n項和和歸納推理對題目進行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系;根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線C:x2=4y,過點M(0,2)任作一直線與C相交于A,B兩點,過點By軸的平行線與直線AO相交于點D(O為坐標原點).

(1)證明動點D在定直線上;

(2)作C的任意一條切線l(不含x軸),與直線y=2相交于點N1,與(1)中的定直線相交于點N2,證明|MN2|2-|MN1|2為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖程序框圖的算法思路源于數(shù)學名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖(圖中“m MOD n”表示m除以n的余數(shù)),若輸入的m,n分別為495,135,則輸出的m=( )

A.0
B.5
C.45
D.90

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實數(shù)a的取值范圍是(
A.[ ]
B.[ , ]
C.[ , ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題,其中正確的命題是____.(填出所有正確命題的序號)

x=y=sin2x+)的一條對稱軸;

y=esin2x是以π為周期在(0,)上的增函數(shù);

③函數(shù)y=3sin2x+)的圖象可由y=3sin2x的圖象向左平移個單位得到.

④設x1、x2是關(guān)于x的方程|logax|=ka0a≠1,k0)的兩根,則x1x2=1;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6.

(1)求證:BD平面PAC; (2)求二面角P-BD-A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓軸交于 兩點,且

(1)求橢圓的方程;

(2)設點是橢圓上的一個動點,且直線與直線分別交于 兩點.是否存在點使得以 為直徑的圓經(jīng)過點?若存在,求出點的橫坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,函數(shù).

(1)若極大值;

(2)若無零點,求實數(shù)的取值范圍;

(3)若有兩個相異零點,,求證:.

查看答案和解析>>

同步練習冊答案