已知(
x
-
2
x
n展開式中第三項的系數(shù)是144.
(1)求n的值;
(2)求展開式中含x3的項.
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:(1)依題意,利用二項式的通項公式可求得n的值;
(2)設(shè)第r+1項為含x3的項,利用二項式的通項公式可求得r=1,從而可求得展開式中含x3的項.
解答: 解:(1)T3=
C
2
n
(
x
)n-2
(-
2
x
)2
=4
C
2
n
x
n-4
2
,…3分
依題意得4
C
2
n
=144,∴n=9…6分
(2)設(shè)第r+1項為含x3的項,則
C
r
9
(
x
)
9-r
(-
2
x
)
r
=(-2)r
C
r
9
x
9-3r
2
,…8分
9-3r
2
=3,r=1,…10分
∴第二項為含x3的項,T2=-2
C
1
9
x3=-18x3…12分
點評:本題考查二項式系數(shù)的性質(zhì),著重考查二項式的通項公式及其應(yīng)用,考查運算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,地面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,點E是PC的中點.
(Ⅰ)求證:PA∥平面EDB;
(Ⅱ)求證:DE⊥平面PBC;
(Ⅲ)求二面角E-BD-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平面ABEF⊥平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形,∠ADC=90°,AB∥CD,AD=AF=a,AB=2CD=2a.
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求證:AC⊥平面BCE;
(Ⅲ)求四棱錐C-ABEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近年來,網(wǎng)上購物已經(jīng)成為人們消費的一種趨勢.為了獲得更多的利潤,某網(wǎng)店在國慶節(jié)前后搞了一次長達(dá)50天的促銷活動.在這50天內(nèi),網(wǎng)店的銷售額(單位:萬元)與促銷時間(單位:天)的關(guān)系滿足f(t)=-
1
10
t(t-60),0≤t≤50;網(wǎng)店的投資額g(t)與促銷時間t的關(guān)系如下圖所示.(利潤=銷售額-投資額)
(Ⅰ)促銷活動的第30天,網(wǎng)店獲得的利潤為多少萬元?
(Ⅱ)請你寫出網(wǎng)店的投資額g(t)與促銷時間t之間的關(guān)系式;
(Ⅲ)在促銷活動的前30天內(nèi),哪一天的銷售利潤最大?最大利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足Sn+1=4an+2,(n∈N*),a1=2,
(1)設(shè)bn=an+1-λan,數(shù)列{bn}為等比數(shù)列,求實數(shù)λ的值;
(2)設(shè)cn=
an
2n
(n∈N*),求數(shù)列{cn}的通項公式;
(3)令dn=(
1
2log2
an
n
-
1
log2
an+1
n+1
)•2n+1,求數(shù)列{dn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體中的10個個體的數(shù)值由小到大依次為c,3,3,8,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10,平均數(shù)為10,若要使該總體的方差最小,則abc=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

帆船是借助風(fēng)推動船只在規(guī)定距離內(nèi)競速的一項水上運動,是奧運會的正式比賽項目,帆船的最大動力來源是“伯努利效應(yīng)”,如果一帆船所受“伯努利效應(yīng)”產(chǎn)生力的效果可使船向北偏東30以速度20km/h行駛,而此時水的流向是正東,流速為20km/h.若不考慮其他因素,帆船的航行的實際速度為
 
,方向為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-a|+3x,當(dāng)a=1時,求不等式f(x)≥3x+2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列結(jié)論中:
①若不等式f(x)>0的解集為(-∞,m)∪(n,+∞),則f(m)=f(n)=0;
②命題x,y∈R,若x2+y2=0,則x=0或y=0的否命題是假命題;
③在△ABC中,A>B的充要條件是sinA>sinB;
④若非零向量
a
,
b
,
c
兩兩成的夾角均相等,則夾角的大小為120°;
其中正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案