在中,兩個定點,的垂心H(三角形三條高線的交點)是AB邊上高線CD的中點。
(1)求動點C的軌跡方程;
(2)斜率為2的直線交動點C的軌跡于P、Q兩點,求面積的最大值(O是坐標(biāo)原點)。
(1)(2)
解析試題分析:(1)設(shè)動點C(x,y)則D(x,0)。
因為H是CD的中點,故,
因為 所以 故
整理得動點C的軌跡方程. ……4分
(2)設(shè)并代入得
,即, ……6分
又原點O到直線l的距離為, ……8分
……11分
當(dāng)且僅當(dāng)即時等號成立,故面積的最大值為。
……13分
考點:本小題主要考查軌跡方程的求解,直線與橢圓的位置關(guān)系,弦長公式,三角形面積公式以及基本不等式的應(yīng)用,考查學(xué)生綜合運用所學(xué)知識求解問題的能力.
點評:求解軌跡方程時,要注意將不符合要求的點去掉,即將定義域求出;直線與圓聯(lián)立方程組時,不要忘記驗證
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l.求四邊形F1MNF2面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、分別是橢圓的左、右焦點。
(1)若是第一象限內(nèi)該橢圓上的一點,,求點P的坐標(biāo);
(2)設(shè)過定點M(0,2)的直線與橢圓交于不同的兩點A、B,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C關(guān)于軸對稱,它的頂點在坐標(biāo)原點,并且經(jīng)過點
(1)求拋物線C的標(biāo)準(zhǔn)方程
(2)直線過拋物線的焦點F,與拋物線交于A、B兩點,線段AB的中點M的橫坐標(biāo)為3,求弦長以及直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標(biāo)原點,它的準(zhǔn)線經(jīng)過雙曲線:的一個焦點且垂直于的兩個焦點所在的軸,若拋物線與雙曲線的一個交點是.
(1)求拋物線的方程及其焦點的坐標(biāo);
(2)求雙曲線的方程及其離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過點,它們在軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.
(1)求這三條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標(biāo)原點),過點作一直線交橢圓于、兩點 .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設(shè)點為點關(guān)于軸的對稱點,判斷與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知橢圓的中心在坐標(biāo)原點,長軸長為,離心率,過右焦點的直線交
橢圓于,兩點:
(Ⅰ)求橢圓的方程;(Ⅱ)當(dāng)直線的斜率為1時,求的面積;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com