【題目】設函數(shù)f(x)=|x+1|+|x﹣4|﹣a.
(1)當a=1時,求函數(shù)f(x)的最小值;
(2)若f(x)≥ +1對任意的實數(shù)x恒成立,求實數(shù)a的取值范圍.

【答案】
(1)解:當a=1時,f(x)=|x+1|+|x﹣4|﹣1≥|(x+1)﹣(x﹣4)|﹣1=5﹣1=4.

所以函數(shù)f(x)的最小值為4


(2)解: 對任意的實數(shù)x恒成立|x+1|+|x﹣4|﹣1≥a+ 對任意的實數(shù)x恒成立a+ ≤4對任意實數(shù)x恒成立.

當a<0時,上式顯然成立;

當a>0時,a+ ≥2 =4,當且僅當a= 即a=2時上式取等號,此時a+ ≤4成立.

綜上,實數(shù)a的取值范圍為(﹣∞,0)∪{2}


【解析】(1)當a=1時,利用絕對值不等式的性質(zhì)即可求得最小值;(2) |x+1|+|x﹣4|﹣1≥a+ a+ ≤4,對a進行分類討論可求a的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

在平面直角坐標系中,圓C的方程為 (θ為參數(shù)).以坐標原點O為極點, 軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程.

(Ⅰ)當時,判斷直線的關(guān)系;

(Ⅱ)當上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點坐標為,,過垂直于長軸的直線交橢圓于兩點,且.

(Ⅰ)求橢圓的方程;

(Ⅱ)過的直線與橢圓交于不同的兩點、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有極值.

(1)求的取值范圍;

(2)若處取得極值,且當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓過點,離心率為,左右焦點分別為,過點的直線交橢圓于兩點。

(1)求橢圓的方程;

(2)當的面積為時,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x﹣1),已知當x∈[0,1]時,f(x)=( 1x , 則
①2是函數(shù)f(x)的一個周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個對稱軸;
⑤當x∈(3,4)時,f(x)=( x3
其中所有正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個總體中的100個個體的編號分別為0,1,2,3,…,99,依次將其分成10個小段,段號分別為0,1,2,…,9.現(xiàn)要用系統(tǒng)抽樣的方法抽取一個容量為10的樣本,規(guī)定如果在第0段隨機抽取的號碼為i,那么依次錯位地取出后面各段的號碼,即第k段中所抽取的號碼的個位數(shù)為i+k或i+k-10(i+k≥10),則當i=7時,所抽取的第6個號碼是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|(x﹣m+2)(x﹣m﹣2)≤0,x∈R,m∈R}.
(1)若A∩B={x|0≤x≤3},求實數(shù)m的值;
(2)若ARB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P ABCD中,E是棱PC上一點,且2,底面ABCD是邊長為2的正方形,△PAD為正三角形,平面ABE與棱PD交于點F,平面PCD與平面PAB交于直線l,且平面PAD⊥平面ABCD.

(1)求證:l∥EF;

(2)求四棱錐P-ABEF的體積.

查看答案和解析>>

同步練習冊答案