【題目】如圖,在四棱錐P ABCD中,E是棱PC上一點(diǎn),且2,底面ABCD是邊長為2的正方形,△PAD為正三角形,平面ABE與棱PD交于點(diǎn)F,平面PCD與平面PAB交于直線l,且平面PAD⊥平面ABCD.
(1)求證:l∥EF;
(2)求四棱錐P-ABEF的體積.
【答案】(1)見解析; (2).
【解析】
(1) 取PD的中點(diǎn)F,連接EF,先證明AB||平面PCD,再證明l∥EF.(2)先證明PF面,再求四棱錐P-ABEF的體積.
證明:取PD的中點(diǎn)F,連接EF,
∵底面ABCD是正方形,∴AB∥CD,
因?yàn)?,所以點(diǎn)E是PC的中點(diǎn),所以PE=EC,
因?yàn)镈F=PF,所以EF||CD,
因?yàn)锳B||CD,所以AB||EF,因?yàn)?/span>,
所以AB||平面PCD,
又平面PAB與平面PCD交于直線l,,
∴AB∥l.
∴l(xiāng)∥EF.
(2)由面面,交線為
因?yàn)镃D⊥平面PAD,
面,
所以EF⊥PF,
因?yàn)锳F⊥PF,因?yàn)锳F,EF面,AF∩EF=F,
所以PF面,
所以,
所以體積為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+1|+|x﹣4|﹣a.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的最小值;
(2)若f(x)≥ +1對任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱垂直于底面,, 為的中點(diǎn),過的平面與交于點(diǎn).
(1)求證:點(diǎn)為的中點(diǎn);
(2)四邊形是什么平面圖形?說明理由,并求其面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個(gè)動(dòng)點(diǎn),且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,AB=3,BC=4,E,F(xiàn)分別在線段BC,AD上,EF∥AB,將矩形ABEF沿EF折起,記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.
(1)在線段BC是否存在一點(diǎn)E,使得ND⊥FC ,若存在,求出EC的長并證明;
若不存在,請說明理由.
(2)求四面體NEFD體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知,分別為橢圓C:的左、右焦點(diǎn),點(diǎn)在橢圓C上.
(1)求的最小值;
(2)已知直線l:與橢圓C交于兩點(diǎn)A、B,過點(diǎn)且平行于直線l的直線交橢圓C于另一點(diǎn)Q,問:四邊形PABQ能否成為平行四邊形?若能,請求出直線l的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù),r>0).以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 ρsin(θ+ )+1=0.
(1)求圓C的圓心的極坐標(biāo);
(2)當(dāng)圓C與直線l有公共點(diǎn)時(shí),求r的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)U=R,集合A={x∈R|},B={x∈R|0<x<2},則(UA)∩B=( 。
A.(1,2]
B.[1,2)
C.(1,2)
D.[1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖的程序圖的算法思路中是一種古老而有效的算法﹣﹣輾轉(zhuǎn)相除法,執(zhí)行改程序框圖,若輸入的m,n的值分別為30,42,則輸出的m=( 。
A.0
B.2
C.3
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com