已知函數(shù)f(x)=loga(x+2),
(1)若函數(shù)f(x)的圖象經(jīng)過M(7,2)點求a的值;
(2)若a=3,x∈(1,25],求值域,并解關(guān)于x的不等式f(x)≤-1.
(3)函數(shù)f(x)的反函數(shù)過定點P求P點坐標(biāo).
解:(1)函數(shù)f(x)的圖象經(jīng)過M(7,2)點
則有l(wèi)og
a(7+2)=2,
解得:a=3,
(2)若a=3,函數(shù)f(x)=log
3(x+2),當(dāng)x∈(1,25]時,
3<x+2≤27,∴1<log
3(x+2)≤3,即y∈(1,3],
所以函數(shù)f(x)的值域為(1,3].
又不等式f(x)≤-1?不等式log
3(x+2)≤log
3?0<x+2≤
?-2<x≤-
.
∴不等式的解為:-2<x≤-
.
(3)函數(shù)f(x)=log
a(x+2),當(dāng)x=-1時,y=0,
依題意,點(-1,0)在函數(shù)f(x)=log
a(x+2)的圖象上,
則點(0,-1)在函數(shù)f(x)=log
a(x+2)的反函數(shù)的圖象上
那么P點的坐標(biāo)為(0,-1).
分析:(1)根據(jù)函數(shù)f(x)=log
a(x+2)經(jīng)過M(7,2),將點的坐標(biāo)代入得一個等式,解此等式即可求得結(jié)果;
(2)要求函數(shù)f(x)的值域,根據(jù)對數(shù)函數(shù)的單調(diào)性即可求得結(jié)果,解不等式也是依據(jù)單調(diào)性.
(3)利用函數(shù)f(x)=log
a(x+2)的圖象經(jīng)過點(-1,0)可知點(0,-1)在函數(shù)f(x)=log
a(x+2)的反函數(shù)的圖象上.
點評:此題是基礎(chǔ)題.考查對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用、反函數(shù)等,體現(xiàn)了轉(zhuǎn)化的思想,同時考查了運(yùn)算能力.