【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為(
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)

【答案】B
【解析】解:∵y=f(x+2)為偶函數(shù),∴y=f(x+2)的圖象關(guān)于x=0對稱
∴y=f(x)的圖象關(guān)于x=2對稱
∴f(4)=f(0)
又∵f(4)=1,∴f(0)=1
設(shè)g(x)= (x∈R),則g′(x)= =
又∵f′(x)<f(x),∴f′(x)﹣f(x)<0
∴g′(x)<0,∴y=g(x)在定義域上單調(diào)遞減
∵f(x)<ex
∴g(x)<1
又∵g(0)= =1
∴g(x)<g(0)
∴x>0
故選B.
構(gòu)造函數(shù)g(x)= (x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.函數(shù)fx=ex+x2+x+1gx)的圖象關(guān)于直線2x﹣y﹣3=0對稱,PQ分別是函數(shù)fx),gx)圖象上的動點,則|PQ|的最小值為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點為,右頂點為,上頂點為,若, 軸垂直,且.

(1)求橢圓方程;

(2)過點且不垂直于坐標軸的直線與橢圓交于兩點,已知點,當時,求滿足的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}定義為a1>0,a11=a,an+1=an+ an2 , n∈N*
(1)若a1= (a>0),求 + +…+ 的值;
(2)當a>0時,定義數(shù)列{bn},b1=ak(k≥12),bn+1=﹣1+ ,是否存在正整數(shù)i,j(i≤j),使得bi+bj=a+ a2+ ﹣1.如果存在,求出一組(i,j),如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為 的周長為.

(1)求橢圓的標準方程;

(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 向量 =(Sn , 1), =(2n﹣1, ),滿足條件 ,
(1)求數(shù)列{an}的通項公式,
(2)設(shè)函數(shù)f(x)=( x , 數(shù)列{bn}滿足條件b1=1,f(bn+1)=
①求數(shù)列{bn}的通項公式,
②設(shè)cn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,中點.

(1)求點到平面的距離;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=1,對a,b∈(0,+∞), + ≥|2x﹣1|﹣|x+1|恒成立,
(1)求 + 的最小值;
(2)求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案