橢圓有公共的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個交點(diǎn),則=(   )
A.B.C.D.
C
因?yàn)閮汕有公共焦點(diǎn),所以,設(shè),
,,
,應(yīng)選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓 .有相同的離心率,過點(diǎn)的直線,依次交于A,C,D,B四點(diǎn)(如圖).當(dāng)直線的上頂點(diǎn)時, 直線的傾斜角為.

(1)求橢圓的方程;
(2)求證:;
(3)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知圓及定點(diǎn),點(diǎn)Q是圓A上的動點(diǎn),點(diǎn)G在BQ上,點(diǎn)P在QA上,且滿足=0.
(I)求P點(diǎn)所在的曲線C的方程;
(II)過點(diǎn)B的直線與曲線C交于M、N兩點(diǎn),直線與y軸交于E點(diǎn),若為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,已知中心在原點(diǎn),離心率為的橢圓E的一個焦點(diǎn)為圓C:x2+y2-4x+2=0的圓心.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)P是橢圓E上一點(diǎn),過P作兩條斜率之積為的直線l1,l2.當(dāng)直線l1,l2都與圓C相切時,求P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓方程為
(1)求圓心軌跡的參數(shù)方程和普通方程;
(2)點(diǎn)是(1)中曲線上的動點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓離心率為,且經(jīng)過點(diǎn),過橢圓的左焦點(diǎn)作直線交橢圓于A、B兩點(diǎn),以O(shè)A、OB為鄰邊作平行四邊形OAPB。 
(1)求橢圓E的方程
(2)現(xiàn)將橢圓E上的點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼囊话耄笏们的焦點(diǎn)坐標(biāo)和離心率
(3)是否存在直線,使得四邊形OAPB為矩形?若存在,求出直線的方程。若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=,它與直線x+y+1=0交于P、Q兩點(diǎn),若OP⊥OQ,求橢圓方程。(O為原點(diǎn))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如右圖,設(shè)由拋物線與過它的焦點(diǎn)F的直線所圍成封閉曲面圖形的面積為(陰影部分)。
(1)設(shè)直線與拋物線交于兩點(diǎn),且,直線的斜率為,試用表示;
(2)求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知、是橢圓>0)的兩個焦點(diǎn),為橢圓上一點(diǎn),且.若的面積為9,則="____________."

查看答案和解析>>

同步練習(xí)冊答案