【題目】拋物線(xiàn)的焦點(diǎn)為F,P為其上一動(dòng)點(diǎn),設(shè)直線(xiàn)l與拋物線(xiàn)C相交于A,B兩點(diǎn),點(diǎn)下列結(jié)論正確的是( )
A.|PM| +|PF|的最小值為3
B.拋物線(xiàn)C上的動(dòng)點(diǎn)到點(diǎn)的距離最小值為3
C.存在直線(xiàn)l,使得A,B兩點(diǎn)關(guān)于對(duì)稱(chēng)
D.若過(guò)A、B的拋物線(xiàn)的兩條切線(xiàn)交準(zhǔn)線(xiàn)于點(diǎn)T,則A、B兩點(diǎn)的縱坐標(biāo)之和最小值為2
【答案】AD
【解析】
根據(jù)拋物線(xiàn)的性質(zhì)對(duì)每個(gè)命題進(jìn)行判斷.
A.設(shè)是拋物線(xiàn)的準(zhǔn)線(xiàn),過(guò)作于,則,當(dāng)且僅當(dāng)三點(diǎn)共線(xiàn)時(shí)等號(hào)成立.所以最小值是3,A正確;
B.設(shè)是拋物線(xiàn)上任一點(diǎn),即,,時(shí),,B錯(cuò)誤;
C.假設(shè)存在直線(xiàn),使得A,B兩點(diǎn)關(guān)于對(duì)稱(chēng),設(shè)方程為,由得,
所以,,設(shè),則,中點(diǎn)為,則,,必在直線(xiàn)上,
所以,,這與直線(xiàn)拋物線(xiàn)相交于兩個(gè)點(diǎn)矛盾,故不存在,C錯(cuò)誤;
D.設(shè),由即,得,則切線(xiàn)方程為,
即,同理方程是,
由,解得,由題意在準(zhǔn)線(xiàn)上,
所以,,
所以,
所以時(shí),為最小值.D正確.
故選:AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高中三個(gè)年級(jí)共有4000人,為了了解各年級(jí)學(xué)周末在家的學(xué)習(xí)情況,現(xiàn)通過(guò)分層抽樣的方法獲得相關(guān)數(shù)據(jù)如下(單位:小時(shí)),其中高一學(xué)生周末的平均學(xué)習(xí)時(shí)間記為.
高一:14 15 15.5 16.5 17 17 18 19
高二:15 16 16 16 17 17 18.5
高三:16 17 18 21.5 24
(1)求每個(gè)年級(jí)的學(xué)生人數(shù);
(2)從高三被抽查的同學(xué)中隨機(jī)抽取2人,求2人學(xué)習(xí)時(shí)間均超過(guò)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)從某學(xué)校中選出名學(xué)生,統(tǒng)計(jì)了名學(xué)生一周的戶(hù)外運(yùn)動(dòng)時(shí)間(分鐘)總和,得到如圖所示的頻率分布直方圖和統(tǒng)計(jì)表格.
(1)寫(xiě)出的值,并估計(jì)該學(xué)校人均每周的戶(hù)外運(yùn)動(dòng)時(shí)間(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)假設(shè),則戶(hù)外運(yùn)動(dòng)時(shí)長(zhǎng)為的學(xué)生中,男生人數(shù)比女生人數(shù)多的概率.
(3)若,完成下列列聯(lián)表,并回答能否有90%的把握認(rèn)為“每周至少運(yùn)動(dòng)130分鐘與性別有關(guān)”?
每周戶(hù)外運(yùn)動(dòng)時(shí)間不少于130分鐘 | 每周戶(hù)外運(yùn)動(dòng)時(shí)間少于130分鐘 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),分別是橢圓的左,右焦點(diǎn),兩點(diǎn)分別是橢圓的上,下頂點(diǎn),是等腰直角三角形,延長(zhǎng)交橢圓于點(diǎn),且的周長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線(xiàn)與直分別相交于兩點(diǎn),點(diǎn),求證:的外接圓恒過(guò)原點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C :與圓相交于M,N,P,Q四點(diǎn),四邊形MNPQ為正方形,△PF1F2的周長(zhǎng)為
(1)求橢圓C的方程;
(2)設(shè)直線(xiàn)l與橢圓C相交于A、B兩點(diǎn)若直線(xiàn)AD與直線(xiàn)BD的斜率之積為,證明:直線(xiàn)恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為實(shí)數(shù),用表示不超過(guò)的最大整數(shù),例如,,,對(duì)于函數(shù),若存在,,使得,則稱(chēng)函數(shù)是“函數(shù)”.
(1)判斷函數(shù),是否是“函數(shù)”;
(2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;
(3)若函數(shù)是“函數(shù)”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),求的零點(diǎn);
(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)()的單調(diào)遞減區(qū)間為.
(I)求a的值;
(II)證明:當(dāng)時(shí),;
(III)若存在,使得當(dāng)時(shí),恒有,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com