【題目】如圖,從參加環(huán)保知識競賽的學生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)

(3) 從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數(shù)段的概率

【答案】(1)4;(2)685、75、70;(3)

【解析】

試題(1)根據(jù)頻率分步直方圖的意義,計算可得40~50、50~60、60~70、70~80、90~100這5組的頻率,由頻率的性質(zhì)可得80~90這一組的頻率,進而由頻率、頻數(shù)的關(guān)系,計算可得答案;(2)根據(jù)頻率分步直方圖中計算平均數(shù)、眾數(shù)、中位數(shù)的方法,計算可得答案;(3)記“取出的2人在同一分數(shù)段”為事件E,計算可得80~90之間與90~100之間的人數(shù),并設為a、b、c、d,和A、B,列舉可得從中取出2人的情況,可得其情況數(shù)目與取出的2人在同一分數(shù)段的情況數(shù)目,由等可能事件的概率公式,計算可得答案

解:(1)根據(jù)題意,40~50的這一組的頻率為001×10=01,50~60的這一組的頻率為0015×10=015,60~70的這一組的頻率為0025×10=025,70~80的這一組的頻率為0035×10=035,90~100的這一組的頻率為0005×10=005,則80~90這一組的頻率為1-(01+015+025+035+005)=01,其頻數(shù)為40×01=4;

(2)這次競賽的平均數(shù)為45×01+55×015+65×025+75×035+85×01+95×005=685,70~80一組的頻率最大,人數(shù)最多,則眾數(shù)為75,70分左右兩側(cè)的頻率均為05,則中位數(shù)為70;

(3)記“取出的2人在同一分數(shù)段”為事件E,因為80~90之間的人數(shù)為40×01=4,設為a、b、c、d,90~100之間有40×005=2人,設為A、B,從這6人中選出2人,有(a,b)、(a,c)、(a,d)、(a,A)、(a、B)、(b,c)、(b,d)、(b,A)、(b、B)、(c、d)、(c、A)、(c、B)、(d、A)、(d、B)、(A、B),共15個基本事件,其中事件A包括(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c、d)、(A、B),共7個基本事件,則P(A)=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某射擊運動員,每次擊中目標的概率都是0.8.現(xiàn)采用隨機模擬的方法估計該運動員射擊4次至少擊中3次的概率:先由計算器算出09之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,9表示擊中目標;因為射擊4,故以每4個隨機數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

據(jù)此估計,該射擊運動員射擊4次至少擊中3次的概率為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于的方程上恰有3個解,存在,使不等式成立.

(1)若為真命題,求正數(shù)的取值范圍;

(2)若為真命題,且為假命題,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若函數(shù)恰有一個極值點,求實數(shù)a的取值范圍;

2)當,且時,證明:.(常數(shù)是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面為等邊三角形,,,,點的中點.

1)求證:平面PAD;

2)求二面角PBCD的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是兩條不同的直線,,是三個不同的平面,給出下列四個命題:

①若,,則

②若,,則

③若,,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠家擬在2020年舉行促銷活動,經(jīng)調(diào)查測算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元,滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(萬元)表示為年促銷費用(萬元)的函數(shù);

2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且函數(shù)為偶函數(shù)。

1)求的解析式;

2)若方程有三個不同的實數(shù)根,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為,且,若,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個人玩這個游戲,得出他們“心有靈犀”的概率為________

查看答案和解析>>

同步練習冊答案