【題目】已知橢圓)的左焦點為,點為橢圓上任意一點,且的最小值為,離心率為.

(1)求橢圓的方程;

(2)設(shè)O為坐標原點,若動直線與橢圓交于不同兩點、、都在軸上方),且.

(i)當為橢圓與軸正半軸的交點時,求直線的方程;

(ii)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

【答案】(Ⅰ);(Ⅱ)(i);(ii)存在定點.

【解析】

I)結(jié)合橢圓的性質(zhì),計算a,b的值,即可。(II)(i)計算直線AF的斜率,得到BF的斜率,得到直線BF的方程,代入橢圓方程,得到B點坐標,計算AB直線的斜率,結(jié)合點斜式,計算方程,即可。(ii)設(shè)出直線AF的方程,代入橢圓方程,結(jié)合韋達定理,得到直線AB的斜率,設(shè)出直線AB的方程,令y=0,計算x的值,計算點坐標,即可。

解:(I)設(shè)橢圓的標準方程為:

離心率為,,,

為橢圓上任意一點,且的最小值為,

,

解得,

橢圓的方程為.

(II)

(i)由題意,

,,

直線為:

代入,得,解得,

代入,得,舍,或,.

,直線的方程為:.

(ii)存在一個定點,無論如何變化,直線總經(jīng)過此定點.

證明:,在于軸的對稱點在直線上,

設(shè)直線的方程為:,

代入,得

由韋達定理得,,

由直線的斜率,得的方程為:

,得:

,

,

對于動直線,存在一個定點,無論如何變化,直線總經(jīng)過此定點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,為等邊三角形,平面平面.

(1)證明:平面平面

(2)若,為線段的中點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺機器在三年使用期內(nèi)的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務(wù)次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設(shè)這100臺機器在購機的同時每臺都購買10次維修服務(wù),或每臺都購買11次維修服務(wù),分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買10次還是11次維修服務(wù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列中,,當時,的前項和滿足

1)求的表達式;

2)設(shè),數(shù)列的前項和為,求;

3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在圖1所示的梯形中,,于點,且.將梯形沿對折,使平面平面,如圖2所示,連接,取的中點.

(1)求證:平面平面;

(2)在線段上是否存在點,使得直線平面?若存在,試確定點的位置,并給予證明;若不存在,請說明理由;

(3)設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學2018年的高考考生人數(shù)是2015年高考考生人數(shù)的倍,為了更好地對比該校考生的升學情況,統(tǒng)計了該校2015年和2018年的高考情況,得到如圖柱狀圖:

則下列結(jié)論正確的是  

A. 與2015年相比,2018年一本達線人數(shù)減少

B. 與2015年相比,2018年二本達線人數(shù)增加了

C. 2015年與2018年藝體達線人數(shù)相同

D. 與2015年相比,2018年不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是直線上一動點,PA、PB是圓的兩條切線,A、B為切點,若四邊形PACB面積的最小值是2,則的值是

A. B. C. 2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個同學分別拋擲1枚質(zhì)地均勻的骰子.

1)求他們拋擲點數(shù)相同的概率;

2)求他們拋擲骰子的點數(shù)之和是3的倍數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:曲線稱為橢圓倒橢圓.已知橢圓,它的倒橢圓

1)寫出倒橢圓的一條對稱軸、一個對稱中心;并寫出其上動點橫坐標x的取值范圍.

2)過倒橢圓上的點P,作直線PA垂直于x軸且垂足為點A,作直線PB垂直于y軸且垂足為點B,求證:直線AB與橢圓只有一個公共點.

3)是否存在直線l與橢圓無公共點,且與倒橢圓無公共點?若存在,請給出滿足條件的直線l,并說明理由;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案