(本小題滿分10分)如圖,在直三棱柱中,、分別是、的中點,點上,.
求證:(1)EF∥平面ABC;
(2)平面平面.

見解析。

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,長方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點.

(1)求證:平面平面;
(2)在底面A1D1上有一個靠近D1的四等分點H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱(側棱垂直于底面的棱柱)中, , , , ,點的中點.

(Ⅰ) 求證:∥平面;
(Ⅱ)求AC1與平面CC1B1B所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,,,且,E是PC的中點.

(1)證明:;  
(2)證明:;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本小題滿分12分)

已知三棱錐P­ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N為AB上一點,AB=4AN,M,S分別為PB,BC的中點.
(I)證明:CM⊥SN;(II)求SN與平面CMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)如圖,在三棱錐中,面,是正三角形,
(Ⅰ)求證:;
(Ⅱ)求平面DAB與平面ABC的夾角的余弦值;
(Ⅲ)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,,

(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點,使// 平面?若存在,求出;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正三棱柱ABC—A1B1C1中,底面邊長及側棱長均為2,D是棱AB的中點,
(1)求證;
(2)求異面直線AC1與B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中點,N是BC1的中點.

(1)求證:MN//平面A1B1C1;
(2)求二面角B-C1M-C的平面角余弦值的大。

查看答案和解析>>

同步練習冊答案