(本小題滿分13分)
如圖,在直三棱柱(側(cè)棱垂直于底面的棱柱)中, , , , ,點(diǎn)的中點(diǎn).

(Ⅰ) 求證:∥平面;
(Ⅱ)求AC1與平面CC1B1B所成的角.

(Ⅰ)見(jiàn)解析;(Ⅱ) AC1與平面CC1B1B所成的角為60O

解析試題分析:(1)設(shè)CB1與C1B的交點(diǎn)為E,連接DE,根據(jù)D是AB的中點(diǎn),E是BC1的中點(diǎn),可知DE∥AC1,而DE?平面CDB1,AC1?平面CDB1,根據(jù)線面平行的判定定理可知AC1∥平面CDB1;(2)結(jié)合三棱柱的性質(zhì)可知∠AC1C為AC1與平面CC1B1B所成的角。
證明:   (Ⅰ) 令BC1與CB1的交點(diǎn)為E, 連結(jié)DE.
∵  D是AB的中點(diǎn), E為BC1的中點(diǎn), ∴DE∥AC1
∵ AC1平面CDB1, DE平面CDB1,
∴AC1∥平面CDB1.   ………………6分
(Ⅱ) ∵ 三棱柱ABC-A1B1C1為直三棱柱,
∴  C1C⊥平面ABC, ∴C1C⊥AC,
∵  AC="3," BC="4," AB=5,
,  ∴ ,
∴ AC⊥平面CC1B1B,
∴ ∠AC1C為AC1與平面CC1B1B所成的角
,
根據(jù)平面幾何知識(shí)得:∠AC1C=60O
∴AC1與平面CC1B1B所成的角為60O………13分
考點(diǎn):本題主要考查了直線與平面平行的判定,以及空間兩直線的位置關(guān)系的判定,同時(shí)考查學(xué)生空間想象能力,邏輯思維能力,是基礎(chǔ)題。
點(diǎn)評(píng):解決該試題的關(guān)鍵是對(duì)于三棱柱性質(zhì)的熟練運(yùn)用和線面平行的判定定理的準(zhǔn)確的運(yùn)用和求解。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,在□ABCD中,∠DAB=60°,AB=2,AD="4." 將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

(1)求證:AB⊥DE;
(2)求三棱錐E—ABD的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

(I)當(dāng)時(shí),求證平面
(II)當(dāng)二面角的大小為時(shí),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面,, ,   ,的中點(diǎn).
(Ⅰ)證明:;
(Ⅱ)證明:平面;
(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)
如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(1)求證:BD⊥平面PAC;
(2)求二面角P—CD—B余弦值的大小
(3)求點(diǎn)C到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知棱長(zhǎng)為a的正方體ABCD—A1B1C1D1,E為BC中點(diǎn).
(1)求B到平面B1ED距離
(2)求直線DC和平面B1ED所成角的正弦值. (12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,直三棱柱ABC?A1B1C1中, AC= BC=AA1,D是棱AA1的中點(diǎn),DC1⊥BD.
(Ⅰ)證明:DC1⊥BC;
(Ⅱ)求二面角A1?BD?C1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)如圖,在直三棱柱中,、分別是、的中點(diǎn),點(diǎn)上,.
求證:(1)EF∥平面ABC;
(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分 )如圖,在三棱柱中,所有的棱長(zhǎng)都為2,.
  
(1)求證:;
(2)當(dāng)三棱柱的體積最大時(shí),
求平面與平面所成的銳角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案