【題目】函數(shù)的一段圖象如圖所示:將的圖象向右平移)個單位,可得到函數(shù)的圖象,且圖象關(guān)于原點對稱.(1)求的值.

(2)求 的最小值,并寫出的表達式.

(3)t>0,關(guān)于x的函數(shù)在區(qū)間上最小值為-2,求t的范圍.

【答案】(1)答案見解析;(2)m的最小值為;(3).

【解析】試題分析:

(1)由函數(shù)的圖象結(jié)合三角函數(shù)的性質(zhì)可得,.

(2)結(jié)合(1)的結(jié)論可得,據(jù)此可得的最小值為,.

(3)由題意結(jié)合(2)的結(jié)論可得:,結(jié)合函數(shù)的定義域可得:,據(jù)此可得不等式:,求解不等式可得的取值范圍是.

試題解析:

(1)由函數(shù)的最大值可得,函數(shù)的最小正周期為:,

,當時,,

故:,令可得:.

(2)結(jié)合(1)的結(jié)論可得

的最小值為,將函數(shù)圖象向右平移個單位可得.

(3)由題意結(jié)合(2)的結(jié)論可得:,結(jié)合函數(shù)的定義域可得:若函數(shù)能取到最小值,則:,其中,

據(jù)此可得的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 .命題 :方程 表示焦點在 軸上的橢圓;命題 :圓錐曲線 的離心率 ,若命題 為真命題,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸、y軸上的截距相等,求切線的方程;
(2)從圓C外一點P(x1 , y1)向圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使|PM|最小的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學的投籃命中次數(shù), 乙組記錄中有一個數(shù)據(jù)模糊,無法確認, 在圖中以表示.

)如果乙組同學投籃命中次數(shù)的平均數(shù)為, 及乙組同學投籃命中次數(shù)的方差;

)在()的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學中,各隨機選取一名, 記事件A兩名同學的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min.在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設纜車勻速直線運行的速度為130 m/min,山路AC長為1260 m,經(jīng)測量,cos A=,cos C=

(1)求索道AB的長;

(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點,且當傾斜角為 60°的直線 l 經(jīng)過拋物線 C1 的焦點 F 時,有|AB|=

(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2= ,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2 截成三等分?若存在,求出直線 l 的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)獨游戲越來越受人們喜愛,今年某地區(qū)科技館組織數(shù)獨比賽,該區(qū)甲、乙、丙、丁四所學校的學生積極參賽,參賽學生的人數(shù)如表所示:

中學

人數(shù)

30

40

20

10

為了解參賽學生的數(shù)獨水平,該科技館采用分層抽樣的方法從這四所中學的參賽學生中抽取30名參加問卷調(diào)查.
(Ⅰ)問甲、乙、丙、丁四所中學各抽取多少名學生?
(Ⅱ)從參加問卷調(diào)查的30名學生中隨機抽取2名,求這2名學生來自同一所中學的概率;
(Ⅲ)在參加問卷調(diào)查的30名學生中,從來自甲、丙兩所中學的學生中隨機抽取2名,用X表示抽得甲中學的學生人數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若離散型隨機變量ξ的概率分布如表所示,則a的值為( )

ξ

﹣1

1

P

4a﹣1

3a2+a


A.
B.﹣2
C. 或﹣2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD內(nèi)接于圓O

(1)若AB=2,BC=6,CD=4,AC=8,求BD

(2)若AC=,BC=+1,∠ADB=,求AD2+DC2的取值范圍

查看答案和解析>>

同步練習冊答案