【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù), 乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn), 在圖中以表示.
(Ⅰ)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為, 求及乙組同學(xué)投籃命中次數(shù)的方差;
(Ⅱ)在(Ⅰ)的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名, 記事件A:“兩名同學(xué)的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.
【答案】(Ⅰ),;(Ⅱ).
【解析】試題分析:(Ⅰ)利用平均數(shù)公式即可求得x,利用方差的計(jì)算公式即可求得方差
(Ⅱ)列出這兩名同學(xué)的投籃命中次數(shù)之和為17的所以時(shí)間利用古典概型即可求出概率
試題解析:(Ⅰ)由題可得,
方差
(Ⅱ)記甲組投籃命中次數(shù)低于10次的同學(xué)為,他們的投籃命中次數(shù)分別為9,7
記乙組投籃命中次數(shù)低于10次的同學(xué),他們的投籃命中次數(shù)分別為8,8,9,由題意
不同的選取方法有共6種,
設(shè)“這兩名同學(xué)的投籃命中次數(shù)之和為17”為事件,則中含有共2種基本事件
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲參加A , B , C三個(gè)科目的學(xué)業(yè)水平考試,其考試成績(jī)合格的概率如下表,假設(shè)三個(gè)科目的考試甲是否成績(jī)合格相互獨(dú)立.
科目A | 科目B | 科目C | |
甲 |
(I)求甲至少有一個(gè)科目考試成績(jī)合格的概率;
(Ⅱ)設(shè)甲參加考試成績(jī)合格的科目數(shù)量為X , 求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),再將所得到的圖像向右平移個(gè)單位長(zhǎng)度.
(Ⅰ)求函數(shù)的解析式,并求其圖像的對(duì)稱軸方程;
(Ⅱ)已知關(guān)于的方程在內(nèi)有兩個(gè)不同的解.
(1)求實(shí)數(shù)m的取值范圍;
(2)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐PABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn),已知PA⊥AC,PA=6,BC=8,DF=5.求證:
(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)容量為M的樣本數(shù)據(jù),其頻率分布表如下.
(1)計(jì)算a,b的值;
(2)畫(huà)出頻率分布直方圖;
(3)用頻率分布直方圖,求出總體的眾數(shù)及平均數(shù)的估計(jì)值.
頻率分布表
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
(10,20] | 2 | 0.10 | 0.010 |
(20,30] | 3 | 0.15 | 0.015 |
(30,40] | 4 | 0.20 | 0.020 |
(40,50] | a | b | 0.025 |
(50,60] | 4 | 0.20 | 0.020 |
(60, 70] | 2 | 0.10 | 0.010 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,0<φ<π),其導(dǎo)函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( )
A.f(x)=4sin( x+ π)
B.f(x)=4sin( x+ )
C.f(x)=4sin( x+ )
D.f(x)=4sin( x+ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的一段圖象如圖所示:將的圖象向右平移()個(gè)單位,可得到函數(shù)的圖象,且圖象關(guān)于原點(diǎn)對(duì)稱.(1)求的值.
(2)求 的最小值,并寫(xiě)出的表達(dá)式.
(3)設(shè)t>0,關(guān)于x的函數(shù)在區(qū)間上最小值為-2,求t的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn . 若Sn=2an﹣n,則 + + + = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)我們把一系列向量按次序排成一列,稱之為向量列,記作,已知向量列滿足:,.
(1)證明:數(shù)列是等比數(shù)列;
(2)設(shè)表示向量與間的夾角,若,對(duì)于任意正整數(shù),不等式恒成立,求實(shí)數(shù)的范圍
(3)設(shè),問(wèn)數(shù)列中是否存在最小項(xiàng)?若存在,求出最小項(xiàng);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com