已知數(shù)列{an}的第1項(xiàng)a1=1,且an+1=
an
1+an
(n=1,2,3,…)
(Ⅰ)求a2,a3,a4的值,猜想數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)請證明你的猜想.
考點(diǎn):數(shù)列遞推式,等差關(guān)系的確定
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(Ⅰ)由a1=1,即an+1=
an
1+an
逐次求得a2,a3,a4的值;
(Ⅱ)由遞推式構(gòu)造數(shù)列{
1
an
}
是以
1
a1
=1
為首項(xiàng),1為公差的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式求出
1
an
,則{an}的通項(xiàng)公式可求,從而證得結(jié)論.
解答: (Ⅰ)解:由a1=1,且an+1=
an
1+an
(n=1,2,3,…)
,
得:a2=
a1
1+a1
=
1
2

a3=
a2
1+a2
=
1
2
1+
1
2
=
1
3
,
a4=
a3
1+a3
=
1
3
1+
1
3
=
1
4

猜想an=
1
n
(n=1,2,3,…)
;
(Ⅱ)證明:∵a1=1,且an+1=
an
1+an
(n=1,2,3,…)
,
1
an+1
=
1+an
an
=
1
an
+1
,即
1
an+1
-
1
an
=1
,
因此{
1
an
}
是以
1
a1
=1
為首項(xiàng),1為公差的等差數(shù)列,
1
an
=1+(n-1)=n
,
an=
1
n
(n=1,2,3,…)
點(diǎn)評:本題考查了數(shù)列遞推式,考查了等差關(guān)系的確定,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=logx+1的定義域?yàn)椋ā 。?/div>
A、[-1,+∞)
B、(-1,+∞)
C、(0,+∞)
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,經(jīng)過AB的平面ABEF與平面ABCD成45°角,經(jīng)過BE的平面BENM與平面ABEF成30°角,則平面BENM與平面ABCD所成二面角的余弦值為(  )
A、
2
4
B、
6
4
C、
3
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)算法,其流程圖如圖所示,若輸入a=3,b=4,則輸出的結(jié)果是( 。
A、
7
2
B、6
C、7
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx+n,當(dāng)x∈[a1,b1]時(shí),值域?yàn)閇a2,b2],當(dāng)x∈[a2,b2]時(shí),值域?yàn)閇a3,b3],…,當(dāng)x∈[an-1,bn-1]時(shí),值域?yàn)閇an,bn],其中m,n為常數(shù),a1=0,b1=1
(1)若m=-1,n=0,求an
(2)若m=3,設(shè)數(shù)列{an}與{bn]的前n項(xiàng)和分別為Sn和Tn,求T2014-S2014;
(3)若m=2,n=1,求證:
n
2
-
1
3
b1
b2
+
b2
b3
+…+
bn
n+1b 
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為6元,預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元(9≤x≤11)時(shí),一年的銷售量為(12-x)2萬件.
(1)求公司一年的利潤y(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少時(shí),公司的一年的利潤y最大,求出y最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z是復(fù)數(shù),z+2i、
z
2-i
均為實(shí)數(shù)(i為虛數(shù)單位),
(1)若復(fù)數(shù)(z+ai)2在復(fù)平面上對應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.
(2)若復(fù)數(shù)z1=cosθ+isinθ(0≤θ≤π),求復(fù)數(shù)|z-z1|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=7,b=3,c=5,求最大角和sinC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.已知f(x)=ax5-bx3+c(a>0).若f(x)在x=±1處有極值,且極大值為4,極小值為1,求a、b、c.

查看答案和解析>>

同步練習(xí)冊答案