【題目】設(shè)函數(shù),下述四個結(jié)論:

是偶函數(shù);

的最小正周期為;

的最小值為0;

上有3個零點(diǎn)

其中所有正確結(jié)論的編號是(

A.①②B.①②③C.①③④D.②③④

【答案】B

【解析】

根據(jù)函數(shù)相關(guān)知識對各選項(xiàng)逐個判斷,即可得出其真假.

因?yàn)楹瘮?shù)fx)定義域?yàn)?/span>R,而且f(﹣x)=cos|2x|+|sinx|fx),所以fx)是偶函數(shù),①正確;

因?yàn)楹瘮?shù)ycos|2x|的最小正周期為π,y|sinx|的最小正周期為π,所以fx)的最小正周期為π,②正確;

fx)=cos|2x|+|sinx|cos2x+|sinx|12sin2x+|sinx|=﹣2|sinx|2,而|sinx|[0,1],所以當(dāng)|sinx|1時,fx)的最小值為0,③正確;

由上可知fx)=0可得12sin2x+|sinx|0,解得|sinx|1|sinx|(舍去)

因此在[0,2π]上只有xx,所以④不正確.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),它的導(dǎo)函數(shù)為.

(1)當(dāng)時,求的零點(diǎn);

(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個零點(diǎn),且

1)求的取值范圍;

2)證明:隨著的增大而減;

3)證明:隨著的增大而減小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面平面,直線平面,且

1)求證:DA平面;

2)若,平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)求曲線的普通方程及直線的直角坐標(biāo)方程;

2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的極坐標(biāo)方程,并求出曲線公共弦所在直線的極坐標(biāo)方程;

2)若射線與曲線交于兩點(diǎn),與曲線交于點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),分別為橢圓的右下頂點(diǎn),且.

1)求橢圓的方程;

2)設(shè)點(diǎn)在橢圓內(nèi),滿足直線的斜率乘積為,且直線,分別交橢圓于點(diǎn).

①若,關(guān)于軸對稱,求直線的斜率;

②若的面積分別為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)若恒成立,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司甲、乙兩個班組分別試生產(chǎn)同一種規(guī)格的產(chǎn)品,已知此種產(chǎn)品的質(zhì)量指標(biāo)檢測分?jǐn)?shù)不小于70時,該產(chǎn)品為合格品,否則為次品,現(xiàn)隨機(jī)抽取兩個班組生產(chǎn)的此種產(chǎn)品各100件進(jìn)行檢測,其結(jié)果如下表:

質(zhì)量指標(biāo)檢測分?jǐn)?shù)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

甲班組生產(chǎn)的產(chǎn)品件數(shù)

7

18

40

29

6

乙班組生產(chǎn)的產(chǎn)品件數(shù)

8

12

40

32

8

(1)根據(jù)表中數(shù)據(jù),估計(jì)甲、乙兩個班組生產(chǎn)該種產(chǎn)品各自的不合格率;

(2)根據(jù)以上數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為該種產(chǎn)品的質(zhì)量與生產(chǎn)產(chǎn)品的班組有關(guān)?

甲班組

乙班組

合計(jì)

合格品

次品

合計(jì)

(3)若按合格與不合格比例,從甲班組生產(chǎn)的產(chǎn)品中抽取4件產(chǎn)品,從乙班組生產(chǎn)的產(chǎn)品中抽取5件產(chǎn)品,記事件A:從上面4件甲班組生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,且都是合格品;事件B:從上面5件乙班組生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,一件是合格品,一件是次品,試估計(jì)這兩個事件哪一種情況發(fā)生的可能性大.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案