【題目】在平面直角坐標系中,如果都是整數(shù),就稱點為整點,下列命題中正確的是_____________(寫出所有正確命題的編號)

①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點

②如果都是無理數(shù),則直線不經(jīng)過任何整點

③直線經(jīng)過無窮多個整點,當(dāng)且僅當(dāng)經(jīng)過兩個不同的整點

④直線經(jīng)過無窮多個整點的充分必要條件是:都是有理數(shù)

⑤存在恰經(jīng)過一個整點的直線

【答案】①③⑤

【解析】

給直線分別取不同的方程,可得到②和④的反例,同時找到符合條件①和⑤的直線;通過過原點的直線經(jīng)過兩個不同的整點可證得其經(jīng)過無窮多個整點,③正確.

①令直線為:,則其不與坐標軸平行且不經(jīng)過任何整點,①正確;

②令直線為:,則直線經(jīng)過整點,②錯誤;

③令直線為:,過兩個不同的整點

,兩式作差得:

即直線經(jīng)過整點

直線經(jīng)過無窮多個整點,③正確;

④令直線為:,則不過整點,④錯誤;

⑤令直線為:,則其只經(jīng)過一個整點,⑤正確.

本題正確結(jié)果:①③⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為準線為.已知以為圓心,半徑為4的圓與交于兩點,是該圓與拋物線的一個交點,.

(1)求的值

(2)已知點的縱坐標為且在,、上異于點的另兩點,且滿足直線和直線的斜率之和為,試問直線是否經(jīng)過一定點若是,求出定點的坐標,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知若橢圓)交軸于兩點,點是橢圓上異于,的任意一點,直線分別交軸于點,,則為定值.

1)若將雙曲線與橢圓類比,試寫出類比得到的命題;

2)判定(1)類比得到命題的真假,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),

(1)求實數(shù)的值

(2)如果對任意,不等式恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校實行自主招生,參加自主招生的學(xué)生從8個試題中隨機挑選出4個進行作答,至少答對3個才能通過初試已知甲、乙兩人參加初試,在這8個試題中甲能答對6個,乙能答對每個試題的概率為,且甲、乙兩人是否答對每個試題互不影響.

1)試通過概率計算,分析甲、乙兩人誰通過自主招生初試的可能性更大;

2)若答對一題得5分,答錯或不答得0分,記乙答題的得分為,求的分布列及數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)曲線y=xn+1(n∈N*)在點(1,1)處的切線與x軸的交點的橫坐標為xn,令an=lgxn,a1+a2+…+a99的值為( 。

A. 1 B. 2 C. -2 D. -1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個數(shù)為______.

1.設(shè)是一個區(qū)間,若對任意,,當(dāng)時,都有,則上單調(diào)遞增;

2.函數(shù)在定義域上是單調(diào)遞減函數(shù);

3.函數(shù)在定義域上是單調(diào)遞增函數(shù);

4.集合相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王投資1萬元2萬元、3萬元獲得的收益分別是4萬元、9萬元、16萬元為了預(yù)測投資資金x(萬元)與收益y萬元)之間的關(guān)系,小王選擇了甲模型和乙模型.

1)根據(jù)小王選擇的甲、乙兩個模型,求實數(shù)a,b,c,p,q,r的值

2)若小王投資4萬元,獲得收益是25.2萬元,請問選擇哪個模型較好?

查看答案和解析>>

同步練習(xí)冊答案