【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心為,半徑為1的圓.

(1)求曲線, 的直角坐標(biāo)方程;

(2)設(shè)為曲線上的點(diǎn), 為曲線上的點(diǎn),求的取值范圍.

【答案】(1)的直角坐標(biāo)方程為, 的直角坐標(biāo)方程為;(2)的取值范圍是.

【解析】試題分析:(Ⅰ)消去參數(shù)可得C1的直角坐標(biāo)方程,易得曲線C2的圓心的直角坐標(biāo)為(0,3),可得C2的直角坐標(biāo)方程;

)設(shè)M(2cos,sin),由三角函數(shù)和二次函數(shù)可得|MC2|的取值范圍,結(jié)合圓的知識(shí)可得答案.

試題解析:

1)消去參數(shù)可得的直角坐標(biāo)方程為.

曲線的圓心的直角坐標(biāo)為,

的直角坐標(biāo)方程為.

2)設(shè)

.

,, .

根據(jù)題意可得,

的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[-2,0)時(shí),f(x)=-1,若關(guān)于x的方程f(x)-loga(x+2)=0(a>0且a≠1)在區(qū)間(-2,6)內(nèi)恰有4個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(  )

A. B. (1,4)

C. (1,8) D. (8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018屆遼寧省凌源市高三上學(xué)期期末】隨著科技的發(fā)展,手機(jī)成為人們?nèi)粘I钪斜夭豢缮俚耐ㄐ殴ぞ,現(xiàn)在的中學(xué)生幾乎都擁有了屬于自己的手機(jī).為了調(diào)查某地區(qū)高中生一周內(nèi)使用手機(jī)的頻率,某機(jī)構(gòu)隨機(jī)抽查了該地區(qū)100名高中生某一周內(nèi)使用手機(jī)的時(shí)間(單位:小時(shí)),所取樣本數(shù)據(jù)分組區(qū)間為,由此得到如圖所示的頻率分布直方圖.

1)求的值并估計(jì)該地區(qū)高中生一周使用手機(jī)時(shí)間的平均值;

2)從使用手機(jī)時(shí)間在的四組學(xué)生中,用分層抽樣方法抽取13人,則每組各應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣(mài)也開(kāi)始成為不少人日常生活中不可或缺的一部分,為了解網(wǎng)絡(luò)外賣(mài)在市的普及情況, 市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣(mài)的問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到表格(單位:人).

1)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣(mài)的情況與性別有關(guān)?

2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出了3人贈(zèng)送外賣(mài)優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣(mài)的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣(mài)的人數(shù)為,的數(shù)學(xué)期望和方差.

參考公式: 其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)證明:;

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)人們休閑方式的一次調(diào)查中,共調(diào)查120,其中女性70,男性50人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運(yùn)動(dòng);男性中有20人主要的休閑方式是看電視,另外30人主要的休閑方式是運(yùn)動(dòng).

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×的列聯(lián)表:

休閑方式

性別     

看電視

運(yùn) 動(dòng)

總 計(jì)

女 性

男 性

總 計(jì)

(2)有多大的把握認(rèn)為休閑方式與性別有關(guān)?

參考公式及數(shù)據(jù):K2

①當(dāng)K22.706時(shí),90%的把握認(rèn)為A、B有關(guān)聯(lián);

②當(dāng)K23.841時(shí),95%的把握認(rèn)為A、B有關(guān)聯(lián);

③當(dāng)K26.635時(shí)99%的把握認(rèn)為A、B有關(guān)聯(lián).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,動(dòng)點(diǎn)滿足,其中分別表示直線的斜率,為常數(shù),當(dāng)時(shí),點(diǎn)的軌跡為;當(dāng)時(shí),點(diǎn)的軌跡為

(1)求的方程;

(2)過(guò)點(diǎn)的直線與曲線順次交于四點(diǎn),且,,是否存在這樣的直線,使得成等差數(shù)列?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個(gè)典型函數(shù),若,則稱為狄利克雷函數(shù).對(duì)于狄利克雷函數(shù)給出下面4個(gè)命題:①對(duì)任意,都有;②對(duì)任意都有;③對(duì)任意都有, ;④對(duì)任意,都有.其中所有真命題的序號(hào)是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,且.

1)求證:數(shù)列是等差數(shù)列;

2)設(shè),求.

查看答案和解析>>

同步練習(xí)冊(cè)答案