【題目】冠狀病毒是一個(gè)大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等,在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:

方式一:逐份檢驗(yàn),則需要檢驗(yàn).

方式二:混合檢驗(yàn),將其中)份血液樣本分別取樣混合在一起檢驗(yàn).

若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為.

1)現(xiàn)有份血液樣本,其中只有份樣本為陽性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率.

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次為.

i)若,試求關(guān)于的函數(shù)關(guān)系式;

ii)若,且采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,.

【答案】1;(2)(i;(ii.

【解析】

1)設(shè)恰好經(jīng)過次檢驗(yàn)?zāi)馨殃栃詷颖救繖z驗(yàn)出來為事件,利用古典概型、排列組合能求出恰好經(jīng)過兩次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率;

2)(i)由已知得,的所有可能取值為、,求出,從而可求得,由,能求出關(guān)于的函數(shù)關(guān)系式;

ii)由,可得出,可得,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合題中所給數(shù)據(jù)可求得的最大值.

1)設(shè)恰好經(jīng)過次檢驗(yàn)?zāi)馨殃栃詷颖救繖z驗(yàn)出來為事件,則

所以,恰好經(jīng)過次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率為;

2)(i)由已知得,的所有可能取值為、

,,

,

,得,化簡得;

ii)由題意知,則,即,

構(gòu)造函數(shù),則

當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;

當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.

,

所以的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2)是否存在實(shí)數(shù),使得函數(shù)的圖象與軸相切?若存在,求滿足條件的的取值范圍,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個(gè),在水平桌面上無滑動(dòng)滾動(dòng)一周,它們的中心的運(yùn)動(dòng)軌跡長分別為,,,則(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)分類變量XY,由他們的觀測數(shù)據(jù)計(jì)算得到K2的觀測值范圍是3.841<k<6.635,據(jù)K2的臨界值表,則以下判斷正確的是(

P(K2k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A.在犯錯(cuò)誤概率不超過0.05的前提下,認(rèn)為變量XY有關(guān)系

B.在犯錯(cuò)誤概率不超過0.05的前提下,認(rèn)為變量XY沒有關(guān)系

C.在犯錯(cuò)誤概率不超過0.01的前提下,認(rèn)為變量XY有關(guān)系

D.在犯錯(cuò)誤概率不超過0.01的前提下,認(rèn)為變量XY沒有關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的四棱錐中,四邊形是等腰梯形,,平面,.

1)求證:平面;

2)已知二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面,已知,,,點(diǎn)E是棱的中點(diǎn).

1)求證:平面ABC;

2)在棱CA上是否存在一點(diǎn)M,使得EM與平面所成角的正弦值為,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測如下:

甲說:作品獲得一等獎(jiǎng)”; 乙說:作品獲得一等獎(jiǎng)”;

丙說:兩件作品未獲得一等獎(jiǎng)”; 丁說:作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某公司舉行的一次真假游戲的有獎(jiǎng)競猜中,設(shè)置了“科技”和“生活”這兩類試題,規(guī)定每位職工最多競猜3次,每次競猜的結(jié)果相互獨(dú)立.猜中一道“科技”類試題得4分,猜中一道“生活”類試題得2分,兩類試題猜不中的都得0分.將職工得分逐次累加并用X表示,如果X的值不低于4分就認(rèn)為通過游戲的競猜,立即停止競猜,否則繼續(xù)競猜,直到競猜完3次為止.競猜的方案有以下兩種:方案1:先猜一道“科技”類試題,然后再連猜兩道“生活”類試題;

方案2:連猜三道“生活”類試題.

設(shè)職工甲猜中一道“科技”類試題的概率為0.5,猜中一道“生活”類試題的概率為0.6.

(1)你認(rèn)為職工甲選擇哪種方案通過競猜的可能性大?并說明理由.

(2)職工甲選擇哪一種方案所得平均分高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠C90°,AB2,DAC上的一點(diǎn)(不含端點(diǎn)),將△BCD沿直線BD折起,使點(diǎn)C在平面ABD上的射影O在線段AB上,則線段OB的取值范圍是(

A.,1B.C.,1D.0,

查看答案和解析>>

同步練習(xí)冊(cè)答案