已知數(shù)列{bn}中,bn=(2n-1)·()n-1,請閱讀下列算法框圖,根據(jù)算法框圖判斷該算法能否有確定的結果輸出?并用你學過的數(shù)列知識解釋原因.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{bn}中,b1=
11
7
,bn+1=1+
2
bn
,數(shù)列{an}滿足:an=
1
bn-2
(n∈N*)

(1)求a1,a2
(2)求證:an+1+2an+1=0;
(3)求數(shù)列{an}的通項公式;
(4)求證:(-1)b1+(-1)2b2+…+(-1)nbn<1(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{bn}中,b1=1,且點(bn+1,bn)在直線y=x-1上.數(shù)列{an}中,a1=1,an+1=2an+3,
(Ⅰ) 求數(shù)列{bn}的通項公式
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若cn=an+3,求數(shù)列{bncn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{bn}中,b1=
11
7
,bn+1bn=bn+2.數(shù)列{an}滿足:an=
1
bn-2
(n∈N*)

(Ⅰ)求證:an+1+2an+1=0;
(Ⅱ) 求數(shù)列{an}的通項公式;
(Ⅲ) 求證:(-1)b1+(-1)2b2+…+(-1)nbn<1(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省連云港市灌南高級中學高二(上)期中數(shù)學模擬試卷(三)(解析版) 題型:解答題

已知數(shù)列{bn}中,b1=1,且點(bn+1,bn)在直線y=x-1上.數(shù)列{an}中,a1=1,an+1=2an+3,
(Ⅰ) 求數(shù)列{bn}的通項公式
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若cn=an+3,求數(shù)列{bncn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年福建省廈門一中高一(下)期中數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列{bn}中,,數(shù)列{an}滿足:
(1)求a1,a2;
(2)求證:an+1+2an+1=0;
(3)求數(shù)列{an}的通項公式;
(4)求證:(-1)b1+(-1)2b2+…+(-1)nbn<1(n∈N*

查看答案和解析>>

同步練習冊答案