精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
4x-4,x≤1
x2-4x+3,x>1
,g(x)=lnx,則函數y=f(x)-g(x)的零點個數為( 。
A、1B、2C、3D、4
考點:根的存在性及根的個數判斷
專題:數形結合,函數的性質及應用
分析:畫出f(x)=
4x-4,x≤1
x2-4x+3,x>1
,g(x)=lnx的圖象,根據圖形可判斷交點個數.
解答: 解:∵f(x)=
4x-4,x≤1
x2-4x+3,x>1
,g(x)=lnx,
∴根據圖形可判斷:有3個交點,
∴函數y=f(x)-g(x)的零點個數為3個,
故選:C
點評:本他考查了函數圖象的運用求解有關系的函數的零點問題,關鍵是化函數圖象,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知tanα=-
1
3
,則sin2α+2sinαcosα-3cos2α+1=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線的一條過焦點F的弦PQ,點R在直線PQ上,且滿足
OR
=
1
2
(
OP
+
OQ
)
,R在拋物線準線上的射影為S,設α,β是△PQS中的兩個銳角,則下列四個式子
①tanαtanβ=1;②sinα+sinβ≤
2
;③cosα+cosβ>1;④|tan(α-β)|>tan
α+β
2

中一定正確的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數學 來源: 題型:

移動公司在國慶期間推出4G套餐,對國慶節(jié)當日辦理套餐的客戶進行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.國慶節(jié)當天參與活動的人數統(tǒng)計結果如圖所示,現將頻率視為概率.
(1)求某人獲得優(yōu)惠金額不低于300元的概率;
(2)若采用分層抽樣的方式從參加活動的客戶中選出6人,再從該6人中隨機選出兩人,求這兩人獲得相等優(yōu)惠金額的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角坐標系中,O為原點.點A在x軸的正半軸上,點B在y軸的正半軸上,tan∠OAB=2.二次函數y=x2+mx+2的圖象經過點A,B,頂點為D.
(1)求這個二次函數的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置.將上述二次函數圖象沿y軸向上或向下平移后經過點C.請直接寫出點C的坐標和平移后所得圖象的函數解析式;
(3)設(2)中平移后所得二次函數圖象與y軸的交點為B1,頂點為D1.點P在平移后的二次函數圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

△ABC的內角A,B,C的對邊分別為a,b,c,若a,b,c成等比數列,且c=2a,則sinB=( 。
A、
1
4
B、
3
4
C、
7
4
D、
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知θ∈(0,
π
2
),則
2
sinθ
+
3
1-sinθ
的最小值為( 。
A、5+2
6
B、10
C、6+2
5
D、6+5
2

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,ABCD是塊矩形硬紙板,其中AB=2AD=2
2
,E為DC中點,將它沿AE折成直二面角D-AE-B.
(Ⅰ)求證:BE⊥平面ADE;
(Ⅱ)求銳二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

證明函數y=
2
x-1
在區(qū)間[2,6]上是減函數并求出它的最大值和最小值.

查看答案和解析>>

同步練習冊答案