【題目】設(shè)是圓上的任意一點,是過點且與軸垂直的直線,是直線與軸的交點,點在直線上,且滿足當(dāng)點在圓上運動時,記點的軌跡為曲線.
求曲線的方程;
已知直線與曲線交于兩點,點關(guān)于軸的對稱點為,設(shè),證明:直線過定點,并求面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需再收5元.
該公司對近60天,每天攬件數(shù)量統(tǒng)計如下表:
(1)某人打算將三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過30元的概率;
(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過150件,工資100元,目前前臺有工作人員3人,那么,公司將前臺工作人員裁員1人對提高公司利潤是否更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點在坐標(biāo)原點,焦點F在x軸上,拋物線C上一點到焦點F的距離為.
Ⅰ求拋物線C的標(biāo)準(zhǔn)方程;
Ⅱ設(shè)點,過點的直線l與拋物線C相交于A,B兩點,記直線MA與直線MB的斜率分別為,,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高二年級學(xué)生某次數(shù)學(xué)考試成績的分布情況,從該年級的1120名學(xué)生中隨機抽取了100名學(xué)生的數(shù)學(xué)成績,發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績按照,,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是
A. 頻率分布直方圖中a的值為
B. 樣本數(shù)據(jù)低于130分的頻率為
C. 總體的中位數(shù)保留1位小數(shù)估計為分
D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側(cè)棱B1B上,且, .
求證:(1)直線DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項為1的等差數(shù)列,數(shù)列滿足,且.
(1)求數(shù)列的通項公式;
(2)令,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐, 平面,底面中, , ,且, 為的中點.
(1)求證:平面平面;
(2)問在棱上是否存在點,使平面,若存在,請求出二面角的余弦值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,討論函數(shù)的單調(diào)性;
(Ⅱ)若在區(qū)間上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com