【題目】已知函數(shù),

當(dāng)時(shí),討論函數(shù)的單調(diào)性;

在區(qū)間上恒成立求實(shí)數(shù)的取值范圍

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:求出,對(duì)分四種情況討論,分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;( ,原問(wèn)題等價(jià)于在區(qū)間上恒成立因?yàn)?/span>,要想在區(qū)間上恒成立只需,可得當(dāng)時(shí),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求出,進(jìn)而可得結(jié)論.

試題解析:

當(dāng),時(shí) 時(shí), , 時(shí),

所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;

當(dāng),時(shí), 時(shí), , 時(shí) ,

所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;

當(dāng),時(shí) 時(shí), , 時(shí), ,

所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;

當(dāng),時(shí), 所以在定義域上單調(diào)遞增

綜上當(dāng)時(shí), 在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;

當(dāng)時(shí), 在定義域上單調(diào)遞增;

當(dāng)時(shí) 在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;

當(dāng)時(shí), 在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增

)令 ,

原問(wèn)題等價(jià)于在區(qū)間上恒成立,可見(jiàn)

要想在區(qū)間上恒成立,首先必須要,

,

另一方面當(dāng)時(shí) ,由于,可見(jiàn),

所以在區(qū)間上單調(diào)遞增,所以在區(qū)間上單調(diào)遞減

成立,故原不等式成立

綜上,在區(qū)間上恒成立,則實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是圓上的任意一點(diǎn),是過(guò)點(diǎn)且與軸垂直的直線(xiàn),是直線(xiàn)軸的交點(diǎn),點(diǎn)在直線(xiàn)上,且滿(mǎn)足當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)的軌跡為曲線(xiàn)

求曲線(xiàn)的方程;

已知直線(xiàn)與曲線(xiàn)交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,設(shè),證明:直線(xiàn)過(guò)定點(diǎn),并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解用戶(hù)對(duì)其產(chǎn)品的滿(mǎn)意度,從AB兩地區(qū)分別隨機(jī)調(diào)查了20個(gè)用戶(hù),得到用戶(hù)對(duì)產(chǎn)品的滿(mǎn)意度評(píng)分如下:

A地區(qū):

62

73

81

92

95

85

74

64

53

76


78

86

95

66

97

78

88

82

76

89

B地區(qū):

73

83

62

51

91

46

53

73

64

82


93

48

95

81

74

56

54

76

65

79

)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶(hù)滿(mǎn)意度評(píng)分的莖葉圖,并通過(guò)莖葉圖比較兩地區(qū)滿(mǎn)意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):

)根據(jù)用戶(hù)滿(mǎn)意度評(píng)分,將用戶(hù)的滿(mǎn)意度從低到高分為三個(gè)等級(jí):

滿(mǎn)意度評(píng)分

低于70

70分到89

不低于90

滿(mǎn)意度等級(jí)

不滿(mǎn)意

滿(mǎn)意

非常滿(mǎn)意

記事件C“A地區(qū)用戶(hù)的滿(mǎn)意度等級(jí)高于B地區(qū)用戶(hù)的滿(mǎn)意度等級(jí),假設(shè)兩地區(qū)用戶(hù)的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某自動(dòng)包裝機(jī)包袋的食鹽中,隨機(jī)抽取袋作為樣本,按各袋的質(zhì)量(單位: )分成四組, ,相應(yīng)的樣本頻率分布直方圖如圖所示.

Ⅰ)估計(jì)樣本的中位數(shù)是多少?落入的頻數(shù)是多少?

Ⅱ)現(xiàn)從這臺(tái)自動(dòng)包裝機(jī)包袋的大批量食鹽中,隨機(jī)抽取,表示食鹽質(zhì)量屬于的袋數(shù),依樣本估計(jì)總體的統(tǒng)計(jì)思想,的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上是增函數(shù),則的取值范圍是(  )

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當(dāng)x∈[2,+∞)時(shí),

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點(diǎn)睛】

本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面四個(gè)命題:

在定義域上單調(diào)遞增;

②若銳角滿(mǎn)足,則

是定義在上的偶函數(shù),且在上是增函數(shù),若,則;

④函數(shù)的一個(gè)對(duì)稱(chēng)中心是

其中真命題的序號(hào)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】恩格爾系數(shù)是食品支出總額占個(gè)人消費(fèi)支出總額的比重.恩格爾系數(shù)越小,即家庭的消費(fèi)支出中用于購(gòu)買(mǎi)食物的支出所占比例越小,更多的消費(fèi)用于精神追求,標(biāo)志著家庭越富裕.恩格爾系數(shù)達(dá)59%以上為貧困,5059%為溫飽,4050%為小康,3040%為富裕,低于30%為最富裕.下圖給出了19802017年我國(guó)城鎮(zhèn)居民和農(nóng)村居民家庭恩格爾系數(shù)的變化統(tǒng)計(jì)圖,對(duì)所列年份進(jìn)行分析,則下列結(jié)論正確的是(

A.農(nóng)村和城鎮(zhèn)居民家庭消費(fèi)支出呈下降趨勢(shì)

B.農(nóng)村居民家庭比城鎮(zhèn)居民家庭用于購(gòu)買(mǎi)食品的支出更多

C.1995年我國(guó)農(nóng)村居民初步達(dá)到小康標(biāo)準(zhǔn)

D.2015年城鎮(zhèn)和農(nóng)村居民食品支出占個(gè)人消費(fèi)支出總額之比大于30.6%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】Ox2+y28內(nèi)有一點(diǎn)P(﹣12),AB為過(guò)點(diǎn)P且傾斜角為α的弦,

1)當(dāng)α135°時(shí),求AB的長(zhǎng);

2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫(xiě)出直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,△PCD為等邊三角形,平面PAC⊥平面PCDPACD,CD=2AD=3.

1)設(shè)G,H分別為PB,AC的中點(diǎn),求證:GH//平面PAD;

2)求證:⊥平面PCD;

3)求直線(xiàn)AD與平面PAC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案