5.已知命題p:關(guān)于x的不等式x2+2ax+4>0對(duì)一切x∈R恒成立;命題q:y=-(5-2a)x為減函數(shù),若命題p,q中至少有一個(gè)是真命題,求實(shí)數(shù)a的取值范圍.

分析 由二次函數(shù)圖象可得,關(guān)于x的不等式x2+2ax+4>0對(duì)一切x∈R恒成立必有△=4a2-16<0可得P;由函數(shù)f(x)=-(5-2a)x是減函數(shù)可得5-2a>1可得q,求出p,q 兩個(gè)為假是的a,利用補(bǔ)集的思想即可求出a.

解答 解:由關(guān)于x的不等式x2+2ax+4>0對(duì)一切x∈R恒成立可得△=4a2-16<0,∴命題P:-2<a<2
由函數(shù)f(x)=-(5-2a)x是減函數(shù)可得5-2a>1,則a<2∴命題q:a<2.
若命題“p、q”均為假命題時(shí),
 $\left\{\begin{array}{l}{a≥2或a≤-2}\\{a≥2}\end{array}\right.$⇒a≥2.
所以實(shí)數(shù)a的取值范圍:[2,+∞)

點(diǎn)評(píng) 本題主要考查了p或q復(fù)合命題的真假的應(yīng)用,解題的關(guān)鍵是利用二次函數(shù)的性質(zhì)及指數(shù)函數(shù)的單調(diào)性準(zhǔn)確求出命題p,q為真時(shí)a的范圍,同時(shí)也考查了補(bǔ)集的思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(2x)的定義域是[-1,1],則函數(shù)f(2x+1)的定義域?yàn)閇-$\frac{1}{4}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.隨著人們經(jīng)濟(jì)收入的不斷增長(zhǎng),個(gè)人購(gòu)買家庭轎車已不再是一種時(shí)尚.車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車一族非常關(guān)心的問(wèn)題.某汽車銷售公司作了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車的使用年限x與所支出的總費(fèi)用y(萬(wàn)元)有如表的數(shù)據(jù)資料:
使用年限x23456
總費(fèi)用y2.23.85.56.57.0
(1)在給出的坐標(biāo)系中做出散點(diǎn)圖;
(2)求線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中的$\widehat{a}$、$\widehat$;
(3)估計(jì)使用年限為12年時(shí),車的使用總費(fèi)用是多少?
(最小二乘法求線性回歸方程系數(shù)公式$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.正項(xiàng)等比數(shù)列{an}中的a1、a11是函數(shù)f(x)=$\frac{1}{3}$x3-4x2+6x-3的極值點(diǎn),則log${\;}_{\sqrt{6}}}$a5a6=( 。
A.1B.2C.$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若函數(shù)f(x)是奇函數(shù),且有三個(gè)零點(diǎn)x1、x2、x3,則x1+x2+x3的值為( 。
A.-1B.不確定C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在2和8之間插入3個(gè)數(shù),使它們與這兩個(gè)數(shù)依次構(gòu)成等比數(shù)列,則這3個(gè)數(shù)的積為(  )
A.±64B.64C.±16D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.長(zhǎng)方體ABCD-A1B1C1D1被挖去一個(gè)四棱錐后如圖所示.已知AB=5,BC=4,BB=3.
(1)請(qǐng)補(bǔ)全此圖的三視圖;
 (2)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分圖象如圖所示,其中點(diǎn)P(1,2)為函數(shù)圖象的一個(gè)最高點(diǎn),Q(4,0)為函數(shù)圖象與x軸的一個(gè)交點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移2個(gè)單位得到y(tǒng)=g(x)的圖象,求函數(shù)h(x)=f(x)•g(x)圖象的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列滿足a1=1,an+1=2an+1(n∈N*).則通項(xiàng)公式為an=2n-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案