某校高二(1)班舉行游戲中,有甲、乙兩個(gè)盒子,這兩個(gè)盒子中各裝有大小、形狀完全相同,但顏色不同的8個(gè)小球,其中甲盒子中裝有6個(gè)紅球、2個(gè)白球,乙盒子中裝有7個(gè)黃球、1個(gè)黑球,現(xiàn)進(jìn)行摸球游戲,游戲規(guī)則:從甲盒子中摸一個(gè)紅球記4分,摸出一個(gè)白球記-1分;從乙盒子中摸出一個(gè)黃球記6分,摸出一個(gè)黑球記-2分.
(1)如果每次從甲盒子摸出一個(gè)球,記下顏色后再放回,求連續(xù)從甲盒子中摸出3個(gè)球所得總分(3次得分的總和)不少于5分的概率;
(2)設(shè)X(單位:分)為分別從甲、乙盒子中各摸一個(gè)球所獲得的總分,求X的數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:(1)設(shè)連續(xù)從甲盒子中摸出的3個(gè)球中,紅球有x個(gè),則白球有3-x個(gè),由題意知4x-(3-x)≥5,由此能求出連續(xù)從甲盒子中摸出3個(gè)球所得總分(3次得分的總和)不少于5分的概率.
(2)由題意知X可能取值分別為10,5,2,-3,分別求出相應(yīng)的概率,由此能求出X的數(shù)學(xué)期望.
解答: 解:(1)設(shè)連續(xù)從甲盒子中摸出的3個(gè)球中,
紅球有x個(gè),則白球有3-x個(gè),
由題意知4x-(3-x)≥5,
解得x≥
8
5
,
∵x∈N*,且x≤3,∴x=2或x=3,
∴連續(xù)從甲盒子中摸出3個(gè)球所得總分(3次得分的總和)不少于5分的概率:
p=
C
2
3
(
3
4
)2×
1
4
+(
3
4
)3
=
27
32

(2)由題意知X可能取值分別為10,5,2,-3,
∵每次摸球相互獨(dú)立,
∴P(X=10)=
6
8
×
7
8
=
21
32
,
P(X=5)=
2
8
×
7
8
=
7
32

P(X=2)=
6
8
×
1
8
=
3
32
,
P(X=-1)=
2
8
×
1
8
=
1
32
,
∴X的數(shù)學(xué)期望EX=10×
21
32
+5×
7
32
+2×
3
32
+(-3)×
1
32
=
31
4
點(diǎn)評(píng):本題考查概率的求法,考查離散型分布列的數(shù)學(xué)期望的求法,解題時(shí)要認(rèn)真審題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形AOB的周長(zhǎng)為12.
(1)若扇形AOB的面積為8,求圓心角α的大;
(2)當(dāng)扇形AOB的面積取到最大值時(shí),求圓心角α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

盒中有6只晶體管,有2只次品,4只合格品,從中任取2次,每次一只;
(1)若取后放回,求取到的2只晶體管中恰有一只合格品的概率是多少?
(2)若取后不放回,求取到的2只晶體管中至少有一只合格概率是多少?
(3)若取后不放回,求取到的2只晶體管中至多有一只合格概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+x-6≥0},B={x|x2-6x+5<0},C={x|m-1≤x≤2m}
(Ⅰ)求A∩B,(∁RA)∪B;    
(Ⅱ)若B∩C=C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,(a+b+c)(b+c-a)=
6
bc,求cosA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,獲得單價(jià)xi(元)與銷量yi(件)的數(shù)據(jù)資料如下表:
單價(jià)x(元) 8 8.2 8.4 8.6 8.8 9
銷量y(件) 90 84 83 80 75 68
(Ⅰ)求單價(jià)x對(duì)銷量y的回歸直線方程
y
=bx+a,(其中b=-20,a=
.
y
-b
.
x

(Ⅱ)為了使銷量達(dá)到100件,則單價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖四邊形ABCD是矩形,PA⊥平面ABCD,PA=AD,M、N分別是PC、AB的中點(diǎn).
?①求證MN∥平面PAD;
?②求證MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),并且經(jīng)過點(diǎn)(
5
2
,-
3
2
),求它的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角坐標(biāo)平面上任意兩點(diǎn)P(x1,y1),Q(x2,y  2),定義d(P,Q)=
|x2-x1|,|x2-x1|≥|y2-y1|
|y2-y1|,|x2-x1|<|y2-y1|
.當(dāng)平面上動(dòng)點(diǎn)M(x,y)到定點(diǎn)A(a,b)的距離滿足|MA|=4時(shí),則d(M,A)的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案