【題目】年底某購物網(wǎng)站為了解會員對售后服務(wù)(包括退貨、換貨、維修等)的滿意度,從年下半年的會員中隨機調(diào)查了個會員,得到會員對售后服務(wù)的滿意度評分如下:
根據(jù)會員滿意度評分,將會員的滿意度從低到高分為三個等級:
滿意度評分 | 低于分 | 分到分 | 不低于分 |
滿意度等級 | 不滿意 | 比較滿意 | 非常滿意 |
(1)根據(jù)這個會員的評分,估算該購物網(wǎng)站會員對售后服務(wù)比較滿意和非常滿意的頻率;
(2)以(1)中的頻率作為概率,假設(shè)每個會員的評價結(jié)果相互獨立.
(i)若從下半年的所有會員中隨機選取個會員,求恰好一個評分比較滿意,另一個評分非常滿意的概率;
(ii)若從下半年的所有會員中隨機選取個會員,記評分非常滿意的會員的個數(shù)為,求的分布列,數(shù)學期望及方差.
【答案】(1)可估算該購物網(wǎng)店會員對售后服務(wù)比較滿意和非常滿意的頻率分別為和;(2)(i)0.272;(ii)見解析.
【解析】試題分析: (1)由給出的個數(shù)據(jù)可得,非常滿意的個數(shù)為,不滿意的個數(shù)為,比較滿意的個數(shù)為,由此可估算該購物網(wǎng)站會員對售后服務(wù)比較滿意和非常滿意的頻率;
(2)記“恰好一個評分比較滿意,另一個評分非常滿意”為事件,則.
(ii)的可能取值為,由題意,隨機變量
由此能求出的分布列,數(shù)學期望及方差.
試題解析:(1)由給出的個數(shù)據(jù)可得,非常滿意的個數(shù)為,不滿意的個數(shù)為,比較滿意的個數(shù)為,
,
可估算該購物網(wǎng)店會員對售后服務(wù)比較滿意和非常滿意的頻率分別為和,
(2)(i)記“恰好一個評分比較滿意,另一個評分非常滿意”為事件,則.
(ii)的可能取值為,
,
,
,
,
則的分布列為
由題可知.
科目:高中數(shù)學 來源: 題型:
【題目】【2018屆山西省太原十二中高三上學期1月月考】運動員甲在最近場比賽中所得分數(shù)的莖葉圖如圖所示,由于疏忽,莖葉圖中的兩個數(shù)據(jù)上出行了污漬,導(dǎo)致這兩個數(shù)字無法辨認,但統(tǒng)計員記得除掉污漬處的數(shù)字不影響整體中位數(shù),且這六個數(shù)據(jù)的平均值為.
(1)求污漬處的數(shù)字;
(2)籃球運動員乙在最近場的比賽中所得分數(shù)為.試分別以各自場比賽得分的平均數(shù)與方差來分析這兩名籃球運動員的發(fā)揮水平.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)已知函數(shù)的最小值為,若實數(shù)且,求的
最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 過點, , 分別是橢圓的左、右焦點,以原點為圓心,橢圓的短軸長為直徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線交橢圓于, ,求內(nèi)切圓面積的最大值和此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)當p=3時,若數(shù)列{bn}滿足bn+1=bn+an(n∈N*),b1=2,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱中, 平面, , .過的平面交于點,交于點.
(l)求證: 平面;
(Ⅱ)求證:四邊形為平行四邊形;
(Ⅲ)若是,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求曲線在點處的切線的斜率;
(Ⅱ)判斷方程(為的導(dǎo)數(shù))在區(qū)間內(nèi)的根的個數(shù),說明理由;
(Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個極值點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)當時,求函數(shù)的圖象在處的切線方程;
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知兩個正方形ABCD和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點.
(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;
(2)用反證法證明:直線ME與BN是兩條異面直線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com