【題目】已知函數(shù) f(x)= (a>0且a≠1)
(1)若a=2,解不等式f(x)≤5;
(2)若函數(shù)f(x)的值域是[4,+∞),求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:∵函數(shù) f(x)= (a>0且a≠1),

∴a=2時(shí), ,

∵f(x)≤5,

∴當(dāng)x≤2時(shí),﹣x+6≤5,解得x≥1,∴1≤x≤2;

當(dāng)x>2時(shí),3+log2x≤5,解得x≤4,∴2<x≤4.

應(yīng)用 綜上,不等式f(x)<5的解集為{x|1≤x≤4}


(2)解:∵函數(shù) f(x)= (a>0且a≠1)的值域是[4,+∞),

∴當(dāng)x≤2時(shí),f(x)=﹣x+6≥4,解得x≤2,∴x=2時(shí),f(x)=﹣x+6=4;

當(dāng)x>2時(shí),f(x)=3+logax≥4,∴l(xiāng)ogax≥1,

當(dāng)0<a<1時(shí),x≤a,由x>2,得a≥2,無(wú)解;

當(dāng)a>1時(shí),x≥a,由x>2,得a≤2,∴1<a≤2.

∴實(shí)數(shù)a的取值范圍是(1,2]


【解析】本題考查的是分段函數(shù)的值域應(yīng)用問(wèn)題以及對(duì)數(shù)函數(shù)的單調(diào)性。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】極坐標(biāo)系與直角坐標(biāo)系xoy有相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ=8cosθ. (I)求C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線(xiàn)l與曲線(xiàn)C交于A(yíng),B兩點(diǎn),求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 的定義域?yàn)榧螦,B={x∈Z|0<x<10},C={x∈R|2a+3<x<a+5}.
(1)求A,(RA)∩B;
(2)若A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=ax3﹣bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值為 , (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x)=k有3個(gè)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).

(1)求證:直線(xiàn)BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:方程 表示焦點(diǎn)在y軸上的雙曲線(xiàn),命題q:點(diǎn)(m,1)在橢圓 的內(nèi)部;命題r:函數(shù)f(m)=log2(m﹣a)的定義域;
(1)若p∧q為真命題,求實(shí)數(shù)m的取值范圍;
(2)若p是r的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(用空間向量坐標(biāo)表示解答)如圖,在直三棱柱ABC﹣A1B1C1中,AC=BC=CC1=2,AC⊥BC,D為AB的中點(diǎn).

(1)求證:AC1∥面B1CD
(2)求直線(xiàn)AA1與面B1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2﹣px﹣2=0},B={x|x2+qx+r=0},若A∪B={﹣2,1,5},A∩B={﹣2},求p+q+r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式(4kx﹣k2﹣12k﹣9)(2x﹣11)>0,其中k∈R;
(1)試求不等式的解集A;
(2)對(duì)于不等式的解集A,記B=A∩Z(其中Z為整數(shù)集),若集合B為有限集,求實(shí)數(shù)k的取值范圍,使得集合B中元素個(gè)數(shù)最少,并用列舉法表示集合B.

查看答案和解析>>

同步練習(xí)冊(cè)答案