【題目】某汽車品牌為了了解客戶對(duì)于其旗下的五種型號(hào)汽車的滿意情況,隨機(jī)抽取了一些客戶進(jìn)行回訪,調(diào)查結(jié)果如下表:
汽車型號(hào) | I | II | III | IV | V |
回訪客戶(人數(shù)) | 250 | 100 | 200 | 700 | 350 |
滿意率 | 0.5 | 0.3 | 0.6 | 0.3 | 0.2 |
滿意率是指:某種型號(hào)汽車的回訪客戶中,滿意人數(shù)與總?cè)藬?shù)的比值.
(Ⅰ) 從III型號(hào)汽車的回訪客戶中隨機(jī)選取1人,則這個(gè)客戶不滿意的概率為________;
(Ⅱ) 從所有的客戶中隨機(jī)選取1個(gè)人,估計(jì)這個(gè)客戶滿意的概率;
(Ⅲ) 汽車公司擬改變投資策略,這將導(dǎo)致不同型號(hào)汽車的滿意率發(fā)生變化.假設(shè)表格中只有兩種型號(hào)汽車的滿意率數(shù)據(jù)發(fā)生變化,那么哪種型號(hào)汽車的滿意率增加0.1,哪種型號(hào)汽車的滿意率減少0.1,使得獲得滿意的客戶人數(shù)與樣本中的客戶總?cè)藬?shù)的比值達(dá)到最大?(只需寫出結(jié)論)
【答案】(Ⅰ)0.4(Ⅱ)(Ⅲ)增加IV型號(hào)汽車的滿意率,減少II型號(hào)汽車的滿意率.
【解析】
(Ⅰ)從III型號(hào)汽車的回訪客戶中隨機(jī)選取1人,利用對(duì)立事件概率計(jì)算公式能求出這個(gè)客戶不滿意的概率.(Ⅱ)先求出樣本中的回訪客戶的總數(shù)和樣本中滿意的客戶人數(shù),由此能估計(jì)這個(gè)客戶滿意的概率.(Ⅲ)增加IV型號(hào)汽車的滿意率,減少II型號(hào)汽車的滿意率.
解:(Ⅰ)由表格可知滿意的為0.6,所以不滿意的為
(Ⅱ)由題意知,樣本中的回訪客戶的總數(shù)是,
樣本中滿意的客戶人數(shù)是
,
所以樣本中客戶的滿意率為.
所以從所有的客戶中隨機(jī)選取1個(gè)人,估計(jì)這個(gè)客戶滿意的概率為.
(Ⅲ)增加IV型號(hào)汽車的滿意率,減少II型號(hào)汽車的滿意率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對(duì)于函數(shù)有下述四個(gè)結(jié)論:
①函數(shù)在其定義域上為增函數(shù);
②對(duì)于任意的,都有成立;
③有且僅有兩個(gè)零點(diǎn);
④若在點(diǎn)處的切線也是的切線,則必是零點(diǎn).
其中所有正確的結(jié)論序號(hào)是( )
A.①②③B.①②C.②③④D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A與直線相切且與圓外切。
(1)求圓心的軌跡的方程;
(2)設(shè)第一象限內(nèi)的點(diǎn)在軌跡上,若軸上兩點(diǎn),,滿足且. 延長(zhǎng)、分別交軌跡于、兩點(diǎn),若直線的斜率,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為探索課堂教學(xué)改革,惠來縣某中學(xué)數(shù)學(xué)老師用傳統(tǒng)教學(xué)和“導(dǎo)學(xué)案”兩種教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,分別從兩個(gè)班級(jí)各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),得到如下莖葉圖.記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
(Ⅰ)分析甲、乙兩班的樣本成績(jī),大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說明理由;
(Ⅱ)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“成績(jī)是否優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | |||
成績(jī)不優(yōu)良 | |||
總計(jì) |
參考公式:,其中是樣本容量.
獨(dú)立性檢驗(yàn)臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)A(-1,0),F(2,0),定直線l:x=,不在x軸上的動(dòng)點(diǎn)P與點(diǎn)F的距離是它到直線l的距離的2倍.設(shè)點(diǎn)P的軌跡為E,過點(diǎn)F的直線交E于B、C兩點(diǎn),直線AB、AC分別交l于點(diǎn)M、N
(Ⅰ)求E的方程;
(Ⅱ)試判斷以線段MN為直徑的圓是否過點(diǎn)F,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實(shí)推進(jìn)陽光體育運(yùn)動(dòng),積極引導(dǎo)學(xué)生走向操場(chǎng),走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動(dòng)時(shí)長(zhǎng)35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時(shí)間,采用簡(jiǎn)單隨機(jī)抽樣法抽取了100名學(xué)生,對(duì)其平均每日參加體育鍛煉的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時(shí)間分組統(tǒng)計(jì)如下表:
分組 | ||||||
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時(shí)間不低于120分鐘的學(xué)生稱為“鍛煉達(dá)人”.
(1)將頻率視為概率,估計(jì)我校7000名學(xué)生中“鍛煉達(dá)人”有多少?
(2)從這100名學(xué)生的“鍛煉達(dá)人”中按性別分層抽取5人參加某項(xiàng)體育活動(dòng).
①求男生和女生各抽取了多少人;
②若從這5人中隨機(jī)抽取2人作為組長(zhǎng)候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.
(1)求的值;
(2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | 6 | ||
不獲獎(jiǎng) | |||
合計(jì) | 400 |
(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究患肺癌與是否吸煙有關(guān),某機(jī)構(gòu)做了一次相關(guān)調(diào)查,制成如下圖的列聯(lián)表,其中數(shù)據(jù)丟失,但可以確定的是不吸煙人數(shù)與吸煙人數(shù)相同,吸煙患肺癌人數(shù)占吸煙總?cè)藬?shù)的;不吸煙的人數(shù)中,患肺癌與不患肺癌的比為.
患肺癌 | 不患肺癌 | 合計(jì) | |
吸煙 | |||
不吸煙 | |||
總計(jì) |
(1)若吸煙不患肺癌的有4人,現(xiàn)從患肺癌的人中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人進(jìn)行調(diào)查,求這兩人都是吸煙患肺癌的概率;
(2)若研究得到在犯錯(cuò)誤概率不超過0.001的前提下,認(rèn)為患肺癌與吸煙有關(guān),則吸煙的人數(shù)至少有多少?
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù)).
(1)證明:①當(dāng)時(shí),;
②當(dāng)時(shí),.
(2)是否存在最大的整數(shù),使得函數(shù)在其定義域上是增函數(shù)?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com