【題目】直三棱柱中,底面為等腰直角三角形,,,是側(cè)棱上一點(diǎn),設(shè)

(1) 若,求的值;

(2) 若,求直線與平面所成的角.

【答案】(1)(2)

【解析】

試題(1)以為坐標(biāo)原點(diǎn),以射線、、分別為、軸建立空間直角坐標(biāo)系,求出,利用,求出的值;(2)求出直線的方向向量與平面的法向量,求出向量的夾角的余弦值可得結(jié)果.

試題解析:(1)以為坐標(biāo)原點(diǎn),以射線、分別為、軸建立空間直角坐標(biāo)系,如圖所示,

,,,

,

,即

解得

(2) 解法一:此時(shí)

設(shè)平面的一個(gè)法向量為

所以

設(shè)直線與平面所成的角為

所以直線與平面所成的角為

解法二:聯(lián)結(jié),則,

,平面

平面

所以是直線與平面所成的角;

中,

所以

所以

所以直線與平面所成的角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對(duì)任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年以來,世界經(jīng)濟(jì)和貿(mào)易增長(zhǎng)放緩,中美經(jīng)貿(mào)摩擦影響持續(xù)顯現(xiàn),我國(guó)對(duì)外貿(mào)易仍然表現(xiàn)出很強(qiáng)的韌性.今年以來,商務(wù)部會(huì)同各省市全面貫徹落實(shí)穩(wěn)外貿(mào)決策部署,出臺(tái)了一系列政策舉措,全力營(yíng)造法治化國(guó)際化便利化的營(yíng)商環(huán)境,不斷提高貿(mào)易便利化水平,外貿(mào)穩(wěn)規(guī)模提質(zhì)量轉(zhuǎn)動(dòng)力取得階段性成效,進(jìn)出口保持穩(wěn)中提質(zhì)的發(fā)展勢(shì)頭,如圖是某省近五年進(jìn)出口情況統(tǒng)計(jì)圖,下列描述錯(cuò)誤的是(

A.這五年,2015年出口額最少B.這五年,出口總額比進(jìn)口總額多

C.這五年,出口增速前四年逐年下降D.這五年,2019年進(jìn)口增速最快

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上的點(diǎn)到點(diǎn)的距離比到直線的距離小為坐標(biāo)原點(diǎn).

1)過點(diǎn)且傾斜角為的直線與曲線交于、兩點(diǎn),求的面積;

2)設(shè)為曲線上任意一點(diǎn),點(diǎn),是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長(zhǎng)恒為定值?若存在,求出的方程和定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面平面,直線平面,且.

1)求證:平面;

2)若,平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若曲線在點(diǎn)(1,0)處的切線為l : xy10,求a,b的值;

3)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,如下圖就是在平面直角坐標(biāo)系的“心形曲線”,又名RC心形線.如果以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,其RC心形線的極坐標(biāo)方程為.

1)求RC心形線的直角坐標(biāo)方程;

2)已知與直線為參數(shù)),若直線RC心形線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防新型冠狀病毒的傳染,人員之間需要保持一米以上的安全距離.某公司會(huì)議室共有四行四列座椅,并且相鄰兩個(gè)座椅之間的距離超過一米,為了保證更加安全,公司規(guī)定在此會(huì)議室開會(huì)時(shí),每一行、每一列均不能有連續(xù)三人就座.例如下圖中第一列所示情況不滿足條件(其中“√”表示就座人員).根據(jù)該公司要求,該會(huì)議室最多可容納的就座人數(shù)為(

A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),若上有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案