【題目】2019322日是第二十七屆“世界水日”,322-28日是第三十二屆“中國(guó)水周”為了倡導(dǎo)“堅(jiān)持節(jié)約用水”,某興趣小組在本校4000名同學(xué)中,隨機(jī)調(diào)查了40名同學(xué)家庭中一年的月均用水量(單位:噸),并將月均用水量分為6組:[4,6),[6,8)[8,10),[10,12)[12,14]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

1)求出圖中實(shí)數(shù)a的值;

2)根據(jù)樣本數(shù)據(jù),估計(jì)本校4000名同學(xué)家庭中,月均用水量低于8噸的約有多少戶

3)在月均用水量大于或等于10噸的樣本數(shù)據(jù)中,該興趣小組決定隨機(jī)抽取2名同學(xué)的家庭進(jìn)行回訪,求這2名同學(xué)中恰有1人所在家庭的月均用水量屬于[10,12)組的概率.

【答案】12(戶)(3

【解析】

1)根據(jù)所有矩形的面積和為1即可求出

2)根據(jù)頻率分布直方圖中的數(shù)據(jù)計(jì)算即可;

3)樣本數(shù)據(jù)中月均水量在的戶數(shù)為:,月均用水量在的用戶數(shù)為:,然后用列舉法解決即可.

1

解得:.

2(戶).

3)設(shè)2名同學(xué)中恰有1人所在家族的月均水量屬于為事件A,

由圖可知,樣本數(shù)據(jù)中月均水量在的戶數(shù)為:

記這四名同學(xué)家族分別為ab,c,d.

月均用水量在的用戶數(shù)為:.

記這兩名同學(xué)家族分別為e、f

則選取的同學(xué)家庭的所有可能結(jié)果為:

,共15.

事件A的可能結(jié)果為:,共8.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)遞增區(qū)間.

(2)在ΔABC中,角AB,C所對(duì)的邊分別為ab,c,若f(A)=1,c=10,cosB=,求ΔABC的中線AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三文科名學(xué)生參加了月份的高考模擬考試,學(xué)校為了了解高三文科學(xué)生的歷史、地理學(xué)習(xí)情況,從名學(xué)生中抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,抽出的名學(xué)生的地理、歷史成績(jī)?nèi)缦卤恚?/span>

地理 歷史

[80,100]

[60,80

[40,60

[80,100]

8

m

9

[60,80

9

n

9

[40,60

8

15

7

若歷史成績(jī)?cè)赱80,100]區(qū)間的占30%,

(1)求的值;

(2)請(qǐng)根據(jù)上面抽出的名學(xué)生地理、歷史成績(jī),填寫下面地理、歷史成績(jī)的頻數(shù)分布表:

[80,100]

[60,80

[40,60

地理

歷史

根據(jù)頻數(shù)分布表中的數(shù)據(jù)估計(jì)歷史和地理的平均成績(jī)及方差(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并估計(jì)哪個(gè)學(xué)科成績(jī)更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為1, 的中點(diǎn).

求證: ∥平面

)求與平面 所成角的正弦值;

(Ⅲ)試問線段上是否存在點(diǎn),使?若存在,求 的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,a、bc分別是角A、BC的對(duì)邊,S是該三角形的面積,且

1)求角A的大;

2)若角A為銳角, ,求邊BC上的中線AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn) M是拋物線Cy2=2pxp0)上一點(diǎn),F是拋物線焦點(diǎn), =60°,|FM|=4

1)求拋物線C方程;

2D﹣1,0),過F的直線l交拋物線CA、B兩點(diǎn),以F為圓心的圓F與直線AD相切,試判斷并證明圓F與直線BD的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司發(fā)放員工的薪水有三種方式:①第一個(gè)月工資3000元,以后每月以1%的增長(zhǎng)率增長(zhǎng);②第一個(gè)月工資2400元,以后每月以2%的增長(zhǎng)率增長(zhǎng);③第一個(gè)月工資為3200元,每月漲工資30元.

1)設(shè)第x個(gè)月的工資分別為元,試分別建立關(guān)于x的函數(shù);

2)借助計(jì)算器計(jì)算這三種情況下各個(gè)月的工資;

3)請(qǐng)分析這三種領(lǐng)薪方法的區(qū)別,作為員工選擇何種方法更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形均為 直角梯形, ,四邊形為平行四邊形,平面平面

求證:平面平面

是邊長(zhǎng)為的等邊三角形,且異面直線所成的角為,求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案