用數(shù)學歸納法證明(n+1)(n+2)(n+3)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*),則當n=k+1時,左邊的式子是( 。
分析:先根據(jù)題意求出n=k時左邊的式子,觀察其結構特征,即得所求.
解答:解:當n=k時,左邊等于 (k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),
共(k+1)個數(shù)的積,
則當n=k+1時,左邊的式子是(k+1)個數(shù)的積
故選B.
點評:本題考查用數(shù)學歸納法證明等式,考查觀察能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在用數(shù)學歸納法證明(n+1)(n+2)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*)時,從k到k+1,左端需要增加的代數(shù)式是( 。
A、2k+1
B、2(2k+1)
C、
2k+1
k+1
D、
2k+3
k+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2、用數(shù)學歸納法證明“當n為正奇數(shù)時,xn+yn能被x+y整除”的第二步是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)時,從“n=k到n=k+1”時,左邊應增添的式子是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•濟寧一模)給出下列四個命題:
①命題:“設a,b∈R,若ab=0,則a=0或b=0”的否命題是“設a,b∈R,若ab≠0,則a≠0且b≠0”; 
②將函數(shù)y=
2
sin(2x+
π
4
)的圖象上所有點的橫坐標伸長為原來的2倍(縱坐標不變),再向右平移
π
4
個單位長度,得到函數(shù)y=
2
cosx的圖象; 
③用數(shù)學歸納法證明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)時,從“k”到“k+1”的證明,左邊需增添的一個因式是2(2k+1); 
④函數(shù)f(x)=ex-x-1(x∈R)有兩個零點.
其中所有真命題的序號是
①③
①③

查看答案和解析>>

同步練習冊答案