已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若
OB
=a1
OA
+a2009
OC
,且A,B,C三點(diǎn)共線(O為該直線外一點(diǎn)),則S2009=
 
分析:根據(jù)三點(diǎn)共線可知直線上一個(gè)向量可以用另一個(gè)表示得
AB
=t
AC
,再根據(jù)向量的三角運(yùn)算法則得
OB
=(1-t)
OA
+t
OC
,而
OB
=a1
OA
+a2009
OC
,得到a1+a2009=1;再根據(jù)等差數(shù)列的前n項(xiàng)和公式得到sn=
n(a1+an
2
得,令n=2009得到s2009即可.
解答:解:A,B,C三點(diǎn)共線得
AB
=t
AC
,所以
OB
=
OA
+
AB
=
OA
+t
AC
=
OA
+t(
OC
-
OA
)=(1-t)
OA
+t
OC

OB
=a1
OA
+a2009
OC
得1-t=a1,t=a2009,所以a1+a2009=1;
而sn=
n(a1+an
2
得s2009=
2009
2

故答案為
2009
2
點(diǎn)評(píng):考查學(xué)生掌握等差數(shù)列的前n項(xiàng)和的能力,運(yùn)用向量的共線定理的能力.考查等差數(shù)列,通過對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案