【題目】如圖,正方體的棱長(zhǎng)為4,M為底面ABCD兩條對(duì)角線的交點(diǎn),P為平面內(nèi)的動(dòng)點(diǎn),設(shè)直線PM與平面所成的角為,直線PD與平面所成的角為若,則動(dòng)點(diǎn)P的軌跡長(zhǎng)度為______.
【答案】
【解析】
過(guò)M作ME⊥BC,E為垂足,推導(dǎo)出PC=2PE,以CE的中點(diǎn)O為坐標(biāo)原點(diǎn),BC為x軸,在平面BCC1B1作BC的垂線為y軸,建立平面直角坐標(biāo)系,設(shè)P(x,y),推導(dǎo)出動(dòng)點(diǎn)P的軌跡是以(,0)為圓心,以這半徑的圓,由此能求出動(dòng)點(diǎn)P的軌跡長(zhǎng)度.
過(guò)M作,E為垂足,
則,即,,
以CE的中點(diǎn)O為坐標(biāo)原點(diǎn),BC為x軸,
在平面作BC的垂線為y軸,建立平面直角坐標(biāo)系,
設(shè),,,則
,整理,得.
動(dòng)點(diǎn)P的軌跡是以為圓心,以這半徑的圓,
動(dòng)點(diǎn)P的軌跡長(zhǎng)度為:.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),試判斷函數(shù)的單調(diào)性;
(2)若,求證:函數(shù)在上的最小值小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n,是直線,α,β,γ是平面,給出下列命題:
(1)若α⊥β,α∩β=m,n⊥m,則n⊥α或n⊥β.
(2)若α∥β,α∩γ=m,β∩γ=n,則m∥n.
(3)若mα,nα,m∥β,n∥β,則α∥β
(4)若α∩β=m,n∥m且nα,nβ,則n∥α且n∥β
其中正確的命題是( 。
A. (1)(2)B. (2)(4)C. (2)(3)D. (4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)時(shí),若對(duì)任意,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若是橢圓上不重合的四點(diǎn),與相交于點(diǎn),,且,求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在圓內(nèi)直徑所對(duì)的圓周角是直角.此定理在橢圓內(nèi)(以焦點(diǎn)在軸上的標(biāo)準(zhǔn)形式為例)可表述為“過(guò)橢圓的中心的直線交橢圓于兩點(diǎn),點(diǎn)是橢圓上異于的任意一點(diǎn),當(dāng)直線,斜率存在時(shí),它們之積為定值.”試求此定值;
(2)在圓內(nèi)垂直于弦的直徑平分弦.類比(1)將此定理推廣至橢圓,不要求證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時(shí)駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時(shí)返回海洋.下面是某港口在某季節(jié)每天的時(shí)間與水深關(guān)系表:
時(shí)刻 | 2:00 | 5:00 | 8:00 | 11:00 | 14:00 | 17:00 | 20:00 | 23:00 |
水深(米) | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
經(jīng)長(zhǎng)期觀測(cè),這個(gè)港口的水深與時(shí)間的關(guān)系,可近似用函數(shù)f(t)=Asin(ωt+)+b來(lái)描述.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)f(t)=Asin(ωt+)+b的表達(dá)式;
(2)一條貨船的吃水深度(船底與水面的距離)為4.25米,安全條例規(guī)定至少要有2米的安全間隙(船底與洋底的距離),該船在一天內(nèi)(0:00~24:00)何時(shí)能進(jìn)入港口然后離開(kāi)港口?每次在港口能停留多久?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com