(本題滿分13分) 如圖,是離心率為的橢圓,
:()的左、右焦點(diǎn),直線:將線段分成兩段,其長度之比為1 : 3.設(shè)是上的兩個動點(diǎn),線段的中點(diǎn)在直線上,線段的中垂線與交于兩點(diǎn).
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn),使以為直徑的圓經(jīng)過點(diǎn),若存在,求出點(diǎn)坐標(biāo),若不存在,請說明理由.
(Ⅰ) (Ⅱ)存在兩點(diǎn)符合條件,坐標(biāo)為,理由見解析
解析試題分析:(Ⅰ) 設(shè),則=,所以=1.
因為離心率e=,所以=.
所以橢圓C的方程為. ……5分
(Ⅱ) 當(dāng)直線垂直于軸時,直線方程為=-,
此時(,0)、(,0) ,.不合題意; ……7分
當(dāng)直線不垂直于軸時,設(shè)存在點(diǎn)(-,) (≠0),直線的斜率為,
.
由 得=0,則,
故.此時,直線斜率為,的直線方程為.
即.
聯(lián)立 消去,整理得.
所以,. ……10分
由題意0,于是
=0.
因為在橢圓內(nèi),符合條件;
綜上,存在兩點(diǎn)符合條件,坐標(biāo)為. ……13分
考點(diǎn):本小題主要考查橢圓標(biāo)準(zhǔn)方程的求法和直線與橢圓位置關(guān)系的判斷和應(yīng)用以及向量數(shù)量積的應(yīng)用,考查學(xué)生分析問題、解決問題的能力和運(yùn)算求解能力.
點(diǎn)評:設(shè)直線方程時,要考慮到直線方程斜率是否存在;對于探究性問題,可以先假設(shè)存在,再進(jìn)行計算,如果能求出來,就說明存
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
動圓經(jīng)過定點(diǎn),且與直線相切。
(1)求圓心的軌跡方程;
(2)直線過定點(diǎn)與曲線交于、兩點(diǎn):
①若,求直線的方程;
②若點(diǎn)始終在以為直徑的圓內(nèi),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖橢圓的上頂點(diǎn)為A,左頂點(diǎn)為B, F為右焦點(diǎn), 過F作平行于AB的直線交橢圓于C、D兩點(diǎn). 作平行四邊形OCED, E恰在橢圓上。
(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為, 求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知過點(diǎn)的動直線與拋物線相交于兩點(diǎn),當(dāng)直線的斜率是時,。
(1)求拋物線的方程;(5分)
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍。(7分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸是x軸,拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離為5,求拋物線的方程和m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
填空題(本大題有2小題,每題5分,共10分.請將答案填寫在答題卷中的橫線上):
(Ⅰ)函數(shù)的最小值為 .
(Ⅱ)若點(diǎn)在曲線上,點(diǎn)在曲線上,點(diǎn)在曲線上,則的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓 及直線,當(dāng)直線和橢圓有公共點(diǎn)時.
(1)求實(shí)數(shù)的取值范圍;
(2)求被橢圓截得的最長的弦所在的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
已知橢圓C的兩焦點(diǎn)分別為,長軸長為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長度。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com