(本題滿分12分)已知拋物線的頂點在原點,對稱軸是x軸,拋物線上的點M(-3,m)到焦點的距離為5,求拋物線的方程和m的值.

y2=-8x,m=±2

解析試題分析:法一:根據(jù)已知條件,拋物線方程可設(shè)為y2=-2px(p>0),…………3分
則焦點F(-,0).…………5分
∵點M(-3,m)在拋物線上,且|MF|=5,…………8分
,解得,…………11分
∴拋物線方程為y2=-8x,m=±2.…………12分
法二:設(shè)拋物線方程為y2=-2px(p>0),則準(zhǔn)線方程為x=,…………3分
由拋物線定義,M點到焦點的距離等于M點到準(zhǔn)線的距離,…………5分
∴有-(-3)=5,∴p=4.…………8分
∴所求拋物線方程為y2=-8x,…………10分
又∵點M(-3,m)在拋物線上,故m2=(-8)×(-3),∴m=±2.…………12分
考點:拋物線方程及性質(zhì)
點評:本題利用拋物線定義求解比較簡單

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知是長軸為的橢圓上三點,點是長軸的一個頂點,過橢圓中心,且.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(2)如果橢圓上兩點使直線軸圍成底邊在軸上的等腰三角形,是否總存在實數(shù)使?請給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓的焦點坐標(biāo)為,,且短軸一頂點B滿足,
(Ⅰ) 求橢圓的方程;
(Ⅱ)過的直線l與橢圓交于不同的兩點M、N,則△MN的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知雙曲線與橢圓有相同焦點,且經(jīng)過點
求該雙曲線方程,并求出其離心率、漸近線方程,準(zhǔn)線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分) 如圖,是離心率為的橢圓,
()的左、右焦點,直線將線段分成兩段,其長度之比為1 : 3.設(shè)上的兩個動點,線段的中點在直線上,線段的中垂線與交于兩點.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點,使以為直徑的圓經(jīng)過點,若存在,求出點坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
若直線過點(0,3)且與拋物線y2=2x只有一個公共點,求該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的
橫坐標(biāo)為,求斜率的值;②若點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
給定拋物線,是拋物線的焦點,過點的直線相交于兩點,為坐標(biāo)原點.
(Ⅰ)設(shè)的斜率為1,求以為直徑的圓的方程;
(Ⅱ)設(shè),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某拋物線形拱橋跨度是20米,拱高4米,在建橋時每隔4米需用一支柱支撐,求其中最長的支柱的長.

查看答案和解析>>

同步練習(xí)冊答案