(12分)已知雙曲線(xiàn)與橢圓有相同焦點(diǎn),且經(jīng)過(guò)點(diǎn)
求該雙曲線(xiàn)方程,并求出其離心率、漸近線(xiàn)方程,準(zhǔn)線(xiàn)方程。

,離心率,漸近線(xiàn),準(zhǔn)線(xiàn)

解析試題分析:橢圓的焦點(diǎn)為,設(shè)雙曲線(xiàn)方程為
過(guò)點(diǎn),則,得,而,
,雙曲線(xiàn)方程為。

考點(diǎn):雙曲線(xiàn)方程及其幾何性質(zhì)
點(diǎn)評(píng):本題求雙曲線(xiàn)方程還可利用定義先求得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)

過(guò)拋物線(xiàn)焦點(diǎn)垂直于對(duì)稱(chēng)軸的弦叫做拋物線(xiàn)的通徑。如圖,已知拋物線(xiàn),過(guò)其焦點(diǎn)F的直線(xiàn)交拋物線(xiàn)于、 兩點(diǎn)。過(guò)作準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為、.

(1)求出拋物線(xiàn)的通徑,證明都是定值,并求出這個(gè)定值;
(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿(mǎn)分10分)(Ⅰ) 設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線(xiàn)的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線(xiàn)的斜率分別為,利用(Ⅰ)的結(jié)論直接寫(xiě)出的值。(不必寫(xiě)出推理過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線(xiàn)C的中心在原點(diǎn),拋物線(xiàn)的焦點(diǎn)是雙曲線(xiàn)C的一個(gè)焦點(diǎn),且雙曲線(xiàn)經(jīng)過(guò)點(diǎn),又知直線(xiàn)與雙曲線(xiàn)C相交于A、B兩點(diǎn).
(1)求雙曲線(xiàn)C的方程;
(2)若,求實(shí)數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)如圖橢圓的上頂點(diǎn)為A,左頂點(diǎn)為B, F為右焦點(diǎn), 過(guò)F作平行于AB的直線(xiàn)交橢圓于C、D兩點(diǎn). 作平行四邊形OCED, E恰在橢圓上。

(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為, 求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,焦點(diǎn)在軸上,離心率,分別為橢圓的上頂點(diǎn)和右頂點(diǎn),且
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線(xiàn)與橢圓相交于兩點(diǎn),且(其中為坐標(biāo)原點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸是x軸,拋物線(xiàn)上的點(diǎn)M(-3,m)到焦點(diǎn)的距離為5,求拋物線(xiàn)的方程和m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線(xiàn)l:y=2x-4交拋物線(xiàn)y2=4x于A,B兩點(diǎn),試在拋物線(xiàn)AOB這段曲線(xiàn)上求一點(diǎn)P,使△PAB的面積最大,并求出這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線(xiàn)C的中心在原點(diǎn),拋物線(xiàn)的焦點(diǎn)是雙曲線(xiàn)C的一個(gè)焦點(diǎn),且雙曲線(xiàn)經(jīng)過(guò)點(diǎn),又知直線(xiàn)與雙曲線(xiàn)C相交于A、B兩點(diǎn).
(1)求雙曲線(xiàn)C的方程;
(2)若,求實(shí)數(shù)k值.

查看答案和解析>>

同步練習(xí)冊(cè)答案