(滿分10分)(Ⅰ) 設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,利用(Ⅰ)的結(jié)論直接寫(xiě)出的值。(不必寫(xiě)出推理過(guò)程)

(Ⅰ)見(jiàn)解析;(Ⅱ)

解析試題分析:(Ⅰ),
         …………………………4分
在橢圓上有………………6分
所以       …………………………8分
(Ⅱ)         ……………………10分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),直線斜率的坐標(biāo)表示。
點(diǎn)評(píng):本題較易,(I)利用直線斜率的坐標(biāo)表示,結(jié)合點(diǎn)在橢圓上,證明了為定值,(II)則通過(guò)類比推理,得出結(jié)論。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)的一個(gè)頂點(diǎn)為,離心率為,直線與橢圓交于不同的兩點(diǎn).(1) 求橢圓的方程;(2) 當(dāng)的面積為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知是長(zhǎng)軸為的橢圓上三點(diǎn),點(diǎn)是長(zhǎng)軸的一個(gè)頂點(diǎn),過(guò)橢圓中心,且.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(2)如果橢圓上兩點(diǎn)使直線軸圍成底邊在軸上的等腰三角形,是否總存在實(shí)數(shù)使?請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分) 設(shè)橢圓E中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長(zhǎng)為4,點(diǎn)M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線L交橢圓E于A、B兩點(diǎn),且,求△OAB的面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如果兩個(gè)橢圓的離心率相等,那么就稱這兩個(gè)橢圓相似.已知橢圓與橢圓相似,且橢圓的一個(gè)短軸端點(diǎn)是拋物線的焦點(diǎn).
(Ⅰ)試求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的中心在原點(diǎn),對(duì)稱軸在坐標(biāo)軸上,直線與橢圓交于兩點(diǎn),且與橢圓交于兩點(diǎn).若線段與線段的中點(diǎn)重合,試判斷橢圓與橢圓是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知雙曲線C與橢圓有相同的焦點(diǎn),實(shí)半軸長(zhǎng)為.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若直線與雙曲線有兩個(gè)不同的交點(diǎn),且
(其中為原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知橢圓的焦點(diǎn)坐標(biāo)為,,且短軸一頂點(diǎn)B滿足
(Ⅰ) 求橢圓的方程;
(Ⅱ)過(guò)的直線l與橢圓交于不同的兩點(diǎn)M、N,則△MN的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知雙曲線與橢圓有相同焦點(diǎn),且經(jīng)過(guò)點(diǎn),
求該雙曲線方程,并求出其離心率、漸近線方程,準(zhǔn)線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)
給定拋物線,是拋物線的焦點(diǎn),過(guò)點(diǎn)的直線相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)設(shè)的斜率為1,求以為直徑的圓的方程;
(Ⅱ)設(shè),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案