(本小題滿分12分)
如果兩個(gè)橢圓的離心率相等,那么就稱(chēng)這兩個(gè)橢圓相似.已知橢圓與橢圓相似,且橢圓的一個(gè)短軸端點(diǎn)是拋物線的焦點(diǎn).
(Ⅰ)試求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的中心在原點(diǎn),對(duì)稱(chēng)軸在坐標(biāo)軸上,直線與橢圓交于兩點(diǎn),且與橢圓交于兩點(diǎn).若線段與線段的中點(diǎn)重合,試判斷橢圓與橢圓是否為相似橢圓?并證明你的判斷.

(Ⅰ).(Ⅱ)橢圓與橢圓是相似橢圓. 證明見(jiàn)解析。

解析試題分析:(Ⅰ)橢圓的離心率為, 拋物線的焦點(diǎn)為
設(shè)橢圓的方程為,由題意,得: ,解得,
∴橢圓的標(biāo)準(zhǔn)方程為 .                        ………………………………4分
(Ⅱ)解法一:橢圓與橢圓是相似橢圓.                 ………………………………5分
聯(lián)立的方程,,消去,得,   ……6分
設(shè)的橫坐標(biāo)分別為,則.  
設(shè)橢圓的方程為,      …………………………………7分
聯(lián)立方程組,消去,得,
設(shè)的橫坐標(biāo)分別為,則
∵弦的中點(diǎn)與弦的中點(diǎn)重合,∴,
,∴化簡(jiǎn)得, ……………………………10分
求得橢圓的離心率,    ………………………12分
∴橢圓與橢圓是相似橢圓.
解法二:(參照解法1評(píng)分)
設(shè)橢圓的方程為.
在橢圓上,∴,兩式相減并恒等變形得
在橢圓上,仿前述方法可得.
∵弦的中點(diǎn)與弦的中點(diǎn)重合,
,求得橢圓的離心率, 即橢圓與橢圓是相似橢圓.
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系。
點(diǎn)評(píng):綜合題,判斷橢圓與橢圓是否為相似橢圓,主要是要把握好“如果兩個(gè)橢圓的離心率相等,那么就稱(chēng)這兩個(gè)橢圓相似”這一定義,“點(diǎn)差法”是常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1
(1)求橢圓的方程
(2)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),(e為橢圓C的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

動(dòng)圓經(jīng)過(guò)定點(diǎn),且與直線相切。
(1)求圓心的軌跡方程;
(2)直線過(guò)定點(diǎn)與曲線交于、兩點(diǎn):
①若,求直線的方程;
②若點(diǎn)始終在以為直徑的圓內(nèi),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知橢圓M的中心為坐標(biāo)原點(diǎn) ,且焦點(diǎn)在x軸上,若M的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),M的離心率,過(guò)M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線,交M于A,B兩點(diǎn)。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)N(t,0)是一個(gè)動(dòng)點(diǎn),且,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
(1)焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)為A(2,0),其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,求橢圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線的一條漸近線方程是,并經(jīng)過(guò)點(diǎn),求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿分10分)(Ⅰ) 設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,利用(Ⅰ)的結(jié)論直接寫(xiě)出的值。(不必寫(xiě)出推理過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
求焦點(diǎn)為(-5,0)和(5,0),且一條漸近線為的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)如圖橢圓的上頂點(diǎn)為A,左頂點(diǎn)為B, F為右焦點(diǎn), 過(guò)F作平行于AB的直線交橢圓于C、D兩點(diǎn). 作平行四邊形OCED, E恰在橢圓上。

(Ⅰ)求橢圓的離心率;
(Ⅱ)若平行四邊形OCED的面積為, 求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知橢圓 及直線,當(dāng)直線和橢圓有公共點(diǎn)時(shí).
(1)求實(shí)數(shù)的取值范圍;
(2)求被橢圓截得的最長(zhǎng)的弦所在的直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案