已知,且0°<α<90°,則cosα=( )
A.
B.
C.
D.
【答案】分析:利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn)已知等式的左邊,可得出cosα-sinα=,用cosα表示出sinα,代入sin2α+cos2α=1中,得到關(guān)于cosα的方程,求出方程的解即可得到cosα的值.
解答:解:∵sin(45°-α)=sin45°cosα-cos45°sinα=(cosα-sinα)=,
∴cosα-sinα=,即sinα=cosα-,
又sin2α+cos2α=1,
∴(cosα-2+cos2α=1,即25cos2α-5cosα-12=0,
分解因式得:(5cosα-4)(5cosα+3)=0,
解得:cosα=,cosα=-,
∵0°<α<90°,∴cosα>0,
則cosα=
故選D
點(diǎn)評(píng):此題考查了兩角和與差的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及特殊角的三角函數(shù)值,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇州市木瀆高級(jí)中學(xué)天華學(xué)校高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:填空題

已知,且0°<α<90°,則cosα的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年浙江省嘉興市高一(上)期末數(shù)學(xué)試卷(A卷)(解析版) 題型:解答題

已知,,且0°<α<180°,0°<β<180°,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇州市木瀆高級(jí)中學(xué)天華學(xué)校高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:填空題

已知,且0°<α<90°,則cosα的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年北京市東城區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

已知,且0°<α<90°,則cosα=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案