直線ax+2y-1=0與直線2x-3y-1=0垂直,則a的值為
 
考點(diǎn):直線的一般式方程與直線的垂直關(guān)系
專(zhuān)題:直線與圓
分析:利用兩條直線垂直的充要條件,建立方程,即可求出a的值.
解答: 解:∵直線ax+2y-1=0與直線2x-3y-1=0垂直,
∴2a+2×(-3)=0,
解得a=3,
故答案為3.
點(diǎn)評(píng):本題考查直線的一般式方程與直線的垂直關(guān)系的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

23.已知f(x)=(
1
9
)
x
-2a(
1
3
)
x
+3,x∈[-1,1]
(1)若f(x)的最小值記為h(a),求h(a)的解析式.
(2)是否存在實(shí)數(shù)m,n同時(shí)滿足以下條件:①log3m>log3n>1;②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2,m2];若存在,求出m,n的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+3-a,其中x∈[-2,2].
(1)當(dāng)a∈R時(shí),討論它的單調(diào)性;
(2)若f(x)≥12-4a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)1.5-
1
3
×(-
6
7
)0+80.25×
42
+(
32
×
3
)6-
(
2
3
)
2
3
;
(Ⅱ) log3
27
+lg25+lg4+7 log72+(-9.8)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列運(yùn)算結(jié)果正確的是(  )
A、
(-3)2
=-3
B、log36-log33=1
C、
3a7
4a7
=a
D、log2
1
3
+log2
3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>0且a≠1,那么函數(shù)y=ax與y=logax的圖象關(guān)于( 。
A、原點(diǎn)對(duì)稱(chēng)B、直線y=x對(duì)稱(chēng)
C、x軸對(duì)稱(chēng)D、y軸對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,-3),B(-3,-2),直線l過(guò)點(diǎn)P(1,1)且與線段AB有交點(diǎn),則直線l的斜率k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)P(3,2),且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),如圖所示,求△ABO的面積的最小值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A為銳角,記角A,B,C所對(duì)的邊分別為a,b,c,設(shè)向量
.
m
=(cosA,sinA),
.
n
=(cosA,-sinA),且
.
m
.
n
=
1
2

(1)求角A的大;
(2)若a=
7
,c=
3
求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案