【題目】若將函數(shù)f(x)=sin(2x+ )的圖象向右平移φ個單位,所得圖象關于y軸對稱,則φ的最小正值是 .
【答案】
【解析】解:將函數(shù)f(x)=sin(2x+ )的圖象向右平移φ個單位,
所得圖象對應的函數(shù)解析式為y=sin[2(x﹣φ)+ ]=sin(2x+ ﹣2φ)關于y軸對稱,
則 ﹣2φ=kπ+ ,k∈z,即 φ=﹣ ﹣ ,故φ的最小正值為 ,
所以答案是: .
【考點精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】在空間直角坐標系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1, ),若S1 , S2 , S3分別表示三棱錐D﹣ABC在xOy,yOz,zOx坐標平面上的正投影圖形的面積,則( )
A.S1=S2=S3
B.S2=S1且S2≠S3
C.S3=S1且S3≠S2
D.S3=S2且S3≠S1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 的三個頂點坐標分別為,
(1)求AC邊上的中線所在直線方程;
(2)求AB邊上的高所在直線方程;
(3)求BC邊的垂直平分線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型水果超市每天以元/千克的價格從水果基地購進若干水果,然后以元/千克的價格出售,若有剩余,則將剩下的水果以元/千克的價格退回水果基地,為了確定進貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天記錄的各日需求量的頻率代替各日需求量的概率.
(1)求該超市水果日需求量(單位:千克)的分布列;
(2)若該超市一天購進水果千克,記超市當天水果獲得的利潤為(單位:元),求的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角為A、B、C所對邊的長分別是a、b、c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求sin(A+ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2ωx+)+sin(2ωx-)+2cos2ωx,其中ω>0,且函數(shù)f(x)的最小正周期為π
(1)求ω的值;
(2)求f(x)的單調(diào)增區(qū)間
(3)若函數(shù)g(x)=f(x)-a在區(qū)間[-,]上有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某市組織的一次數(shù)學競賽中全體參賽學生的成績近似服從正態(tài)分布N(60,100),已知成績在90分以上的學生有13人.
(1)求此次參加競賽的學生總數(shù)共有多少人?
(2)若計劃獎勵競賽成績排在前228名的學生,問受獎學生的分數(shù)線是多少?
(參考數(shù)據(jù):若,則;;)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com