【題目】在某市組織的一次數(shù)學(xué)競賽中全體參賽學(xué)生的成績近似服從正態(tài)分布N(60,100),已知成績在90分以上的學(xué)生有13人.
(1)求此次參加競賽的學(xué)生總數(shù)共有多少人?
(2)若計(jì)劃獎(jiǎng)勵(lì)競賽成績排在前228名的學(xué)生,問受獎(jiǎng)學(xué)生的分?jǐn)?shù)線是多少?
(參考數(shù)據(jù):若,則;;)
【答案】(1)10000;(2)80
【解析】分析: (1)設(shè)出參賽人數(shù)的分?jǐn)?shù),根據(jù)分?jǐn)?shù)符合正態(tài)分布,根據(jù)成績在90分以上(含90分)的學(xué)生有13名,列出大于90分的學(xué)生的概率,成績在90分以上(含90分)的學(xué)生人數(shù)約占全體參賽人數(shù)的0.0013,列出比例式,得到參賽的總?cè)藬?shù).
(2)設(shè)受獎(jiǎng)的學(xué)生的分?jǐn)?shù)線為x0.由P(X≥x0)= =0.0228<0.5,可得x0>60.進(jìn)一步得知P(120-x0<X<x0)=1-2P(X≥x0)=0.9544,即可得x0=60+20=80,故受獎(jiǎng)學(xué)生的分?jǐn)?shù)線是80.
詳解:設(shè)學(xué)生的得分情況為隨機(jī)變量X,X~N(60,100).
則μ=60,σ=10.
(1)P(30<X≤90)=P(60-3×10<X≤60+3×10)=0.997 4.
∴P(X>90)= [1-P(30<X≤90)]=0.001 3
∴學(xué)生總數(shù)為:=10 000(人).
(2)成績排在前228名的學(xué)生數(shù)占總數(shù)的0.022 8.設(shè)分?jǐn)?shù)線為x.
則P(X≥x0)=0.022 8.
∴P(120-x0<x<x0)=1-2×0.022 8=0.954 4.
又知P(60-2×10<x<60+2×10)=0.954 4.
∴x0=60+2×10=80(分).
點(diǎn)晴:正態(tài)分布問題,注意三個(gè)關(guān)鍵點(diǎn):
(1)對稱軸 ;②標(biāo)準(zhǔn)差 ;③分布區(qū)間。利用對稱性求制定區(qū)間范圍內(nèi)的概率值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)f(x)=sin(2x+ )的圖象向右平移φ個(gè)單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行的“三色球”購物摸獎(jiǎng)活動(dòng)規(guī)定:在一次摸獎(jiǎng)中,摸獎(jiǎng)?wù)呦葟难b有3個(gè)紅球與4個(gè)白球的袋中任意摸出3個(gè)球,再從裝有1個(gè)藍(lán)球與2個(gè)白球的袋中任意摸出1個(gè)球,根據(jù)摸出4個(gè)球中紅球與藍(lán)球的個(gè)數(shù),設(shè)一、二、三等獎(jiǎng)如下:
獎(jiǎng)級 | 摸出紅、藍(lán)球個(gè)數(shù) | 獲獎(jiǎng)金額 |
一等獎(jiǎng) | 3紅1藍(lán) | 200元 |
二等獎(jiǎng) | 3紅0藍(lán) | 50元 |
三等獎(jiǎng) | 2紅1藍(lán) | 10元 |
其余情況無獎(jiǎng)且每次摸獎(jiǎng)最多只能獲得一個(gè)獎(jiǎng)級.
(1)求一次摸獎(jiǎng)恰好摸到1個(gè)紅球的概率;
(2)求摸獎(jiǎng)?wù)咴谝淮蚊?jiǎng)中獲獎(jiǎng)金額x的分布列與期望E(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC,P0是邊AB上一定點(diǎn),滿足 ,且對于邊AB上任一點(diǎn)P,恒有 則( )
A.∠ABC=90°
B.∠BAC=90°
C.AB=AC
D.AC=BC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z=kx+y,其中實(shí)數(shù)x,y滿足 ,若z的最大值為12,則實(shí)數(shù)k= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,,.
(1)求證:;
(2)若為線段的中點(diǎn),求證:平面;
(3)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2 .M是AD的中點(diǎn),P是BM的中點(diǎn),點(diǎn)Q在線段AC上,且AQ=3QC.
(1)證明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小為60°,求∠BDC的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1<x<6},B={x|2<x<10},C={x|5﹣a<x<a}.
(1)求A∪B,(RA)∩B;
(2)若CB,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】位于濰坊濱海的“濱海之眼”摩天輪是世界上最高的無軸摩天輪,該摩天輪的直徑均為124米,中間沒有任何支撐,摩天輪順時(shí)針勻速旋轉(zhuǎn)一圈需要30分鐘,當(dāng)乘客乘坐摩天輪到達(dá)最高點(diǎn)時(shí),距離地面145米,可以俯瞰白浪河全景,圖中與地面垂直,垂足為點(diǎn),某乘客從處進(jìn)入處的觀景艙,順時(shí)針轉(zhuǎn)動(dòng)分鐘后,第1次到達(dá)點(diǎn),此時(shí)點(diǎn)與地面的距離為114米,則( )
A. 16分鐘B. 18分鐘C. 20分鐘D. 22分鐘
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com