【題目】已知函數(shù).

1)判斷的單調(diào)性并寫出證明過程;

2)當(dāng)時,關(guān)于x的方程在區(qū)間上有唯一實數(shù)解,求a的取值范圍.

【答案】1R上遞增,證明見解析;(2.

【解析】

1)先判斷函數(shù)的奇偶性,再根據(jù)函數(shù)單調(diào)性的定義,作差比較大小即可求證明;

2)根據(jù)(1)中所求單調(diào)性,將問題轉(zhuǎn)化為的零點(diǎn)問題,利用之間的關(guān)系進(jìn)行換元,轉(zhuǎn)化為二次函數(shù)零點(diǎn)的分布問題即可求得.

1R上遞增.

證明:,恒成立,的定義域為R.

,,

是奇函數(shù).

,,

上遞增,又R上連續(xù)不斷的奇函數(shù),

R上遞增.

2)由(1)得

R上遞增.

整理得,在上有唯一實數(shù)解

構(gòu)造,,.

,則,

,

內(nèi)有且只有一個零點(diǎn),無零點(diǎn).

,上為增函數(shù).

)若內(nèi)有且只有一個零點(diǎn),無零點(diǎn).

)若的零點(diǎn),無零點(diǎn),

,

,經(jīng)檢驗符合題意.

綜上所述:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車給市民出行帶來了諸多便利,某公司購買了一批單車投放到某地給市民使用,

據(jù)市場分析,每輛單車的營運(yùn)累計利潤y單位:元)與營運(yùn)天數(shù)x滿足函數(shù)關(guān)系

.

1)要使?fàn)I運(yùn)累計利潤高于800元,求營運(yùn)天數(shù)的取值范圍;

2)每輛單車營運(yùn)多少天時,才能使每天的平均營運(yùn)利潤的值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當(dāng)時,求的單調(diào)區(qū)間和極值.

)若對于任意,都有成立,求的取值范圍 ;

)若證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.

(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.

【答案】I;(II.

【解析】試題分析:(Ⅰ)將由代入,化簡即可得到曲線的極坐標(biāo)方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.

試題解析:(Ⅰ)由,得,即

所以曲線的極坐標(biāo)方程為

II)將的參數(shù)方程代入,得

, 所以,又

所以,且,

所以,

,得,所以.

的取值范圍是.

型】解答
結(jié)束】
23

【題目】已知、均為正實數(shù).

(Ⅰ)若,求證:

(Ⅱ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為的橢圓焦點(diǎn)在軸上,且橢圓個頂點(diǎn)構(gòu)成的四邊形面積為,過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、.

(1)求橢圓的方程;

(2)設(shè)為橢圓上一點(diǎn),且為坐標(biāo)原點(diǎn)).求當(dāng)時,實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動場所,配備了各種文化娛樂活動所需要的設(shè)施,讓廣大居民健康生活、積極向上.社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計數(shù)據(jù)如表:(為了便于計算,把2015年簡記為5,其余以此類推)

年份(年)

5

6

7

8

投資金額(萬元)

15

17

21

27

(1)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程

(2)預(yù)測該社區(qū)在2019年在“文化丹青”上的投資金額.

(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為, .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國漢字聽寫大會》的活動.為響應(yīng)學(xué)校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當(dāng)作概率).

(1)求甲、乙兩人成績的平均數(shù)和中位數(shù);

(2)現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

查看答案和解析>>

同步練習(xí)冊答案