(本題12分)在平面直角坐標(biāo)系O中,直線與拋物線=2相交于A、B兩點。
(1)求證:命題“如果直線過點T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由。
1)利用坐標(biāo)運(yùn)算
(2)逆命題是:“設(shè)直線l交拋物線y2=2x于A、B兩點,如果,那么該直線過點T(3,0).”,該命題是假命題.
解析試題分析:1)解法一:設(shè)過點T(3,0)的直線l交拋物線=2x于點A(x1,y1)、B(x2,y2).
當(dāng)直線l的斜率不存在時,直線l的方程為x=3,此時,直線l與拋物線相交于A(3,)、B(3,-),∴……3分
當(dāng)直線l的斜率存在時,設(shè)直線l的方程為y=k(x-3),其中k≠0.
得ky2-2y-6k=0,則y1y2=-6. 又∵x1=y12, x2=y22,
∴=x1x2+y1y2=="3."
綜上所述, 命題“......”是真命題.
解法二:設(shè)直線l的方程為my =x-3與="2x" 聯(lián)立得到y(tǒng)2-2my-6=0 =x1x2+y1y2
=(my1+3) (my2+3)+ y1y2=(m2+1) y1y2+3m(y1+y2)+9=(m2+1)× (-6)+3m×2m+9=3
(2)逆命題是:“設(shè)直線l交拋物線y2=2x于A、B兩點,如果,那么該直線過點T(3,0).”,該命題是假命題. 例如:取拋物線上的點A(2,2),B(,1),此時=3,直線AB的方程為y = (x+1),而T(3,0)不在直線AB上.……12分
考點:本題主要考查拋物線的幾何性質(zhì),直線好拋物線的位置關(guān)系,命題的概念及四種命題的關(guān)系,向量的坐標(biāo)運(yùn)算。
點評:本題以命題的真假探究為背景,重點考查直線與拋物線的位置關(guān)系,此類問題,往往通過聯(lián)立方程組,應(yīng)用韋達(dá)定理,實現(xiàn)整體代換,簡化解題過程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
求經(jīng)過直線的交點M,且滿足下列條件的直線方程:(1)與直線2x+3y+5=0平行; (2)與直線2x+3y+5=0垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
△ABC中,已知三個頂點的坐標(biāo)分別是A(,0),B(6,0),C(6,5),
(1)求AC邊上的高線BH所在的直線方程;
(2)求的角平分線所在直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知直線:和:。
(1)當(dāng)∥時,求a的值(2)當(dāng)⊥時求a的值及垂足的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
矩形ABCD的對角線AC、BD相交于點M (2,0),AB邊所在直線的方程為:,若點在直線AD上.
(1)求點A的坐標(biāo)及矩形ABCD外接圓的方程;
(2)過點的直線與ABCD外接圓相交于A、B兩點,若,求直線m的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)如圖,已知兩條直線l1:x-3y+12=0,l2:3x+y-4=0,過定點P(-1,2)作一條直線l,分別與l1,l2交于M、N兩點,若P點恰好是MN的中點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線方程;
(2)直線//AB,與AC,BC依次交于E,F(xiàn),.求所在的直線方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com