【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為( )
A.20π
B.24π
C.28π
D.32π
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】a,b為正數(shù),給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 ﹣ =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,圖象的一個對稱中心為( ,0),將函數(shù)f(x)圖象上的所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將所得圖象向右平移0.5π個單位長度后得到函數(shù)g(x)的圖象;
(1)求函數(shù)f(x)與g(x)的解析式;
(2)當(dāng)a≥1,求實(shí)數(shù)a與正整數(shù)n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019個零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=( )
A. 5 B. 4 C. 3 D. 6
【答案】A
【解析】
根據(jù)數(shù)列前n項和的定義得到的值,再由數(shù)列的前n項和的公式得到,進(jìn)而求得首項,由=2,解得m值.
Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,則,
根據(jù)等差數(shù)列的前n項和公式得到Sm=,得到首項為-2,故=2,解得m=5.
故答案為:A.
【點(diǎn)睛】
這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和的關(guān)系,求表達(dá)式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。
【題型】單選題
【結(jié)束】
11
【題目】已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中位數(shù)為1010的一組數(shù)構(gòu)成等差數(shù)列,其末項為 2015,則該數(shù)列的首項為__________.
【答案】5.
【解析】
設(shè)數(shù)列的首項為,則,所以,故該數(shù)列的首項為,所以答案應(yīng)填:.
【考點(diǎn)定位】等差中項.
【題型】填空題
【結(jié)束】
15
【題目】對于不等式,則對區(qū)間上的任意x都成立的實(shí)數(shù)t的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是公比為正數(shù)的等比數(shù)列,,
(1)求的通項公式;
(2)設(shè)是首項為1,公差為2的等差數(shù)列,求數(shù)列的前項和
【答案】(1)(2)
【解析】
(1)根據(jù)等比數(shù)列的通項公式得到:,解得二次方程可得到或(舍去),進(jìn)而得到數(shù)列的通項;(2)已知數(shù)列的類型是等差數(shù)列與等比數(shù)列求和的問題,根據(jù)等差等比數(shù)列求和公式得到結(jié)果即可.
解:(1)設(shè)為等比數(shù)列的公比,則由,得:
即,解得:或(舍去)
所以的通項公式為
(2) 由 等 差 數(shù) 列 的 通 項 公 式 得 到:
由 等 差 數(shù) 列求 和 公 式 和 等 比 數(shù) 列 前 n 項 和 公 式 得 到
【點(diǎn)睛】
這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和的關(guān)系,求表達(dá)式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等。
【題型】解答題
【結(jié)束】
18
【題目】設(shè)a≠b,解關(guān)于x的不等式a2x+b2(1-x)≥[ax+b(1-x)]2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+與雙曲線C2恒有兩個不同的交點(diǎn)A和B,且,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足 是等差數(shù)列,且b1=a1 , b4=a3 .
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若 ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 若方程f(x)=a|x﹣1|,(a∈R)有且僅有兩個不相等的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com