【題目】中位數(shù)為1010的一組數(shù)構(gòu)成等差數(shù)列,其末項為 2015,則該數(shù)列的首項為__________

【答案】5.

【解析】

設(shè)數(shù)列的首項為,則,所以,故該數(shù)列的首項為,所以答案應(yīng)填:

【考點(diǎn)定位】等差中項.

型】填空
結(jié)束】
15

【題目】對于不等式,則對區(qū)間上的任意x都成立的實(shí)數(shù)t的取值范圍是_______

【答案】

【解析】

根據(jù)二次函數(shù)的單調(diào)性求出x2﹣3x+2在區(qū)間[0,2]上的最小值和最大值,把問題轉(zhuǎn)化關(guān)于t的不等式組得答案.

∵x2﹣3x+2=,

當(dāng)x[0,2]時,,(x2﹣3x+2)max=2.

對于不等式(2t﹣t2)≤x2﹣3x+2≤3﹣t2,對區(qū)間[0,2]上任意x都成立的實(shí)數(shù)t的取值范圍是[﹣1,1﹣].

故答案為:[﹣1,1﹣].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=x2+2 f(x)dx,則 f(x)dx=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動物園需要用籬笆圍成兩個面積均為50 的長方形熊貓居室,如圖所示,以墻為一邊(墻不需要籬笆),并共用垂直于墻的一條邊,為了保證活動空間,垂直于墻的邊長不小于2m,每個長方形平行于墻的邊長也不小于2m

1)設(shè)所用籬笆的總長度為l,垂直于墻的邊長為x.試用解析式將l表示成x的函數(shù),并確定這個函數(shù)的定義域;

2)怎樣圍才能使得所用籬笆的總長度最?籬笆的總長度最小是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=(  )

A. 7 B. 5

C. -5 D. -7

【答案】D

【解析】解得

,∴a1a10a1(1+q9)=-7.D.

點(diǎn)睛:在解決等差、等比數(shù)列的運(yùn)算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運(yùn)算,但思路簡潔,目標(biāo)明確;二是利用等差、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題既快捷又方便的工具,應(yīng)有意識地去應(yīng)用.但在應(yīng)用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進(jìn)行適當(dāng)變形. 在解決等差、等比數(shù)列的運(yùn)算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運(yùn)算量”的方法.

型】單選題
結(jié)束】
8

【題目】在數(shù)列{ }中,已知,,則等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的各項均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項和的最大值等于(  )

A. 126 B. 130 C. 132 D. 134

【答案】C

【解析】

由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1q表示出a3b6,進(jìn)而求得qa1,根據(jù){an}為正項等比數(shù)列推知{bn}為等差數(shù)列,進(jìn)而得出數(shù)列bn的通項公式和前n項和,可知Sn的表達(dá)式為一元二次函數(shù),根據(jù)其單調(diào)性進(jìn)而求得Sn的最大值.

由題意可知,lga3=b3,lga6=b6

∵b3=18,b6=12,則a1q2=1018,a1q5=1012,

∴q3=10﹣6

q=10﹣2,∴a1=1022

∵{an}為正項等比數(shù)列,

∴{bn}為等差數(shù)列,

d=﹣2,b1=22.

bn=22+(n﹣1)×(﹣2)=﹣2n+24.

∴Sn=22n+×(﹣2)

=﹣n2+23n=,∵nN*,故n=1112時,(Snmax=132.

故答案為:C.

【點(diǎn)睛】

這個題目考查的是等比數(shù)列的性質(zhì)和應(yīng)用;解決等差等比數(shù)列的小題時,常見的思路是可以化基本量,解方程;利用等差等比數(shù)列的性質(zhì)解決題目;還有就是如果題目中涉及到的項較多時,可以觀察項和項之間的腳碼間的關(guān)系,也可以通過這個發(fā)現(xiàn)規(guī)律。

型】單選題
結(jié)束】
12

【題目】已知數(shù)列是遞增數(shù)列,且對,都有,則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(

A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn是等差數(shù)列{an}的前n項和,已知的等比中項為,且的等差中項為1,求數(shù)列{an}的通項公式。

【答案】.

【解析】

設(shè)等差數(shù)列{an}的首項為a1,公差為d,運(yùn)用等差中項和等比中項的定義,利用等差數(shù)列的求和公式,代入可求a1,d,解方程可求通項an

設(shè)等差數(shù)列{an}的首項,公差為,則通項為,

項和為,依題意有,

其中,由此可得,

整理得, 解方程組得,

由此得;或.

經(jīng)檢驗(yàn)均合題意.

所以所求等差數(shù)列的通項公式為.

【點(diǎn)睛】

本題主要考查了等差數(shù)列的通項公式和性質(zhì)及等比數(shù)列中項的性質(zhì),數(shù)列通項的求法中有常見的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項,但是這種方法需要檢驗(yàn)n=1時通項公式是否適用。

型】解答
結(jié)束】
20

【題目】等差數(shù)列{an}的各項均為正數(shù),a1=3,前n項和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.

(1)anbn

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行新課堂教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和新課堂兩種不同的教學(xué)方式,在甲、乙兩個平行班級進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為成績優(yōu)良”.

分?jǐn)?shù)

[50,59)

[60,69)

[70,79)

[80,89)

[90,100]

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷成績優(yōu)良與教學(xué)方式是否有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

附: 臨界值表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式x2﹣4x+t≤0的解集為A,若(﹣∞,t]∩A≠,則實(shí)數(shù)t的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案