(本小題滿分14分)
已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對于都有成立,試求的取值范圍;
(3)記.當時,函數(shù)在區(qū)間上有兩個零點,
解:(I) 直線的斜率為1.函數(shù)的定義域為,,所以
,所以. 所以. .由解得;[來源:Z,xx,k.Com]
由解得.
所以的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是. ……………………4分
(II),由解得;由解得.
所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
所以當時,函數(shù)取得最小值,.
因為對于都有成立,所以即可.
則. 由解得. 所以的范圍是.……9分
(III)依題得,則.由解得;由解得.
所以函數(shù)在區(qū)間為減函數(shù),在區(qū)間為增函數(shù).
又因為函數(shù)在區(qū)間上有兩個零點,所以
解得.所以的取值范圍是. …………14分
解析
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),(為常數(shù))
(I)當時,求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)有兩個極值點,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
如圖,已知曲線與曲線交于點.直線與曲線分別相交于點.
(Ⅰ)寫出四邊形的面積與的函數(shù)關系;
(Ⅱ)討論的單調(diào)性,并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題13分)
已知f(x)=lnx+x2-bx.
(1)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)當b=-1時,設g(x)=f(x)-2x2,求證函數(shù)g(x)只有一個零點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com